Medical and Hospital News  
IRON AND ICE
NASA's OSIRIS-REx unlocks more secrets from Asteroid Bennu
by Brittany Enos for UA News
Tucson AZ (SPX) Oct 09, 2020

stock illustration only

NASA's first asteroid sample return mission now knows much more about the material it'll be collecting in just a few weeks. In a special collection of six papers published in the journals Science and Science Advances, scientists on the OSIRIS-REx mission present new findings on asteroid Bennu's surface material, geological characteristics, and dynamic history. They also suspect that the delivered sample of Bennu may be unlike anything we have in the meteorite collection on Earth.

These discoveries complete the OSIRIS-REx mission's pre-sample collection science requirements and offer insight into the sample of Bennu that scientists will study for generations to come.

One of the papers, led by Amy Simon from NASA's Goddard Space Flight Center in Greenbelt, Maryland, shows that carbon-bearing, organic material is widespread on the asteroid's surface, including at the mission's primary sample site, Nightingale, where OSIRIS-REx will make its first sample collection attempt on October 20. These findings indicate that hydrated minerals and organic material will likely be present in the collected sample.

This organic matter may contain carbon in a form often found in biology or in compounds associated with biology. Scientists are planning detailed experiments on these organic molecules and expect that the returned sample will help answer complex questions about the origins of water and life on Earth.

"The abundance of carbon-bearing material is a major scientific triumph for the mission. We are now optimistic that we will collect and return a sample with organic material - a central goal of the OSIRIS-REx mission," said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona in Tucson.

Authors of the special collection have also determined that carbonate minerals make up some of the asteroid's geological features. Carbonate minerals often precipitate from hydrothermal systems that contain both water and carbon dioxide. A number of Bennu's boulders have bright veins that appear to be made of carbonate - some of which are located near the Nightingale crater, meaning that carbonates might be present in the returned sample.

The study of the carbonates found on Bennu was led by Hannah Kaplan, from Goddard. These findings have allowed scientists to theorize that Bennu's parent asteroid likely had an extensive hydrothermal system, where water interacted with and altered the rock on Bennu's parent body. Although the parent body was destroyed long ago, we're seeing evidence of what that watery asteroid once looked like here - in its remaining fragments that make up Bennu. Some of these carbonate veins in Bennu's boulders measure up to a few feet long and several inches thick, validating that an asteroid-scale hydrothermal system of water was present on Bennu's parent body.

Scientists made another striking discovery at site Nightingale: its regolith has only recently been exposed to the harsh space environment, meaning that the mission will collect and return some of the most pristine material on the asteroid. Nightingale is part of a population of young, spectrally red craters identified in a study led by Dani DellaGiustina at the University of Arizona. Bennu's "colors" (variations in the slope of the visible-wavelength spectrum) are much more diverse than originally anticipated. This diversity results from a combination of different materials inherited from Bennu's parent body and different durations of exposure to the space environment.

This paper's findings are a major milestone in an ongoing debate in the planetary science community - how primitive asteroids like Bennu change spectrally as they are exposed to "space weathering" processes, such as bombardment by cosmic rays and solar wind. While Bennu appears quite black to the naked eye, the authors illustrate the diversity of Bennu's surface by using false-color renderings of multispectral data collected by the MapCam camera.

The freshest material on Bennu, such as that found at the Nightingale site, is spectrally redder than average and thus appears red in these images. Surface material turns vivid blue when it has been exposed to space weathering for an intermediate period of time. As the surface material continues to weather over long periods of time, it ultimately brightens across all wavelengths, becoming a less intense blue - the average spectral color of Bennu.

The paper by DellaGiustina et al. also distinguishes two main types of boulders on Bennu's surface: dark and rough, and (less commonly) bright and smooth. The different types may have formed at different depths in the parent asteroid of Bennu.

Not only do the boulder types differ visually, they also have their own unique physical properties. The paper led by Ben Rozitis from The Open University in the UK shows that the dark boulders are weaker and more porous, whereas the bright boulders are stronger and less porous. The bright boulders also host the carbonates identified by Kaplan and crew, suggesting that the precipitation of carbonate minerals in cracks and pore spaces may be responsible for their increased strength.

However, both boulder types are weaker than scientists expected. Rozitis and colleagues suspect that Bennu's dark boulders (the weaker, more porous, and more common type) would not survive the journey through Earth's atmosphere. It's therefore likely that the returned samples of asteroid Bennu will provide a missing link for scientists, as this type of material is not currently represented in meteorite collections.

Bennu is a diamond-shaped pile of rubble floating in space, but there's more to it than meets the eye. Data obtained by the OSIRIS-REx Laser Altimeter (OLA) - a science instrument contributed by the Canadian Space Agency - have allowed the mission team to develop a 3D digital terrain model of the asteroid that, at 20 cm resolution, is unprecedented in detail and accuracy. I

n this paper, led by Michael Daly of York University, scientists explain how detailed analysis of the asteroid's shape revealed ridge-like mounds on Bennu that extend from pole-to-pole, but are subtle enough that they could be easily missed by the human eye. Their presence has been hinted at before, but their full pole-to-pole extents only became clear when the northern and southern hemispheres were split apart in the OLA data for comparison.

The digital terrain model also shows that Bennu's northern and southern hemispheres have different shapes. The southern hemisphere appears to be smoother and rounder, which the scientists believe is a result of loose material getting trapped by the region's numerous large boulders.

Another paper in the special collection, led by Daniel Scheeres of University of Colorado Boulder, examines the gravity field of Bennu, which has been determined by tracking the trajectories of the OSIRIS-REx spacecraft and the particles that are naturally ejected from Bennu's surface. The use of particles as gravity probes is fortuitous. Prior to the discovery of particle ejection on Bennu in 2019, the team was concerned about mapping the gravity field to the required precision using only spacecraft tracking data. The natural supply of dozens of mini gravity probes allowed the team to vastly exceed their requirements and gain unprecedented insight into the asteroid interior.

The reconstructed gravity field shows that the interior of Bennu is not uniform. Instead, there are pockets of higher and lower density material inside the asteroid. It's as if there is a void at its center, within which you could fit a couple of football fields. In addition, the bulge at Bennu's equator is under-dense, suggesting that Bennu's rotation is lofting this material.

All six publications in the special collection use global and local datasets collected by the OSIRIS-REx spacecraft from Feb. through Oct. 2019. The special collection underscores that sample return missions like OSIRIS-REx are essential to fully understanding the history and evolution of our Solar System.

The mission is less than two weeks away from fulfilling its biggest goal - collecting a piece of a pristine, hydrated, carbon-rich asteroid. OSIRIS-REx will depart Bennu in 2021 and deliver the sample to Earth on Sep. 24, 2023.

Links to the four papers:

+ Research paper 1
+ Research paper 2
+ Research paper3
+ Research paper 4


Related Links
OSIRIS-REx
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
GMV to carry out the development phase of the GNC system to guide the HERA mission
Madrid, Spain (SPX) Sep 30, 2020
On 15 September, the European Space Agency (ESA) signed with the German company OHB the 129.4-million euro contract covering the detailed design, manufacturing, and testing of the HERA mission. This mission, ESA's first ever planetary defense mission, will be Europe's contribution to an international asteroid deflection effort carried out jointly with NASA and due for lift-off in October 2024. The contract takes in the complete design of the interplanetary probe, integration and tests, including a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
How Aerospace Corp supports the satellites helping wildfire responders save lives

Russia evacuates thousands as munitions explode in fire

Maryland Company Licenses NASA's New Search and Rescue Technology

Giant rice crane urges South Koreans to 'Cheer Up!'

IRON AND ICE
GPS-enabled decoy eggs may help track, catch sea turtle egg traffickers

Fourth GPS 3 Satellite Encapsulated Ahead of Launch

Government to explore new ways of delivering 'sat nav' for the UK

Tech combo is a real game-changer for farming

IRON AND ICE
Study finds preserved brain material in Vesuvius victim

Neuroscientists discover a molecular mechanism that allows memories to form

Past tropical forest changes drove megafauna and hominin extinctions

Modern humans arrived in Western Europe 5,000 years earlier than thought

IRON AND ICE
Animal rivalries could inspire 'Napoleonic' intelligence

2014 seal flu outbreak illustrates threat of avian flus to mammals

Megalodon was exceptionally large compared with other sharks

Alien species to increase by 36 percent globally by 2050

IRON AND ICE
After White House, Covid-19 breaches Pentagon

After White House, Covid-19 breaches Pentagon

Face masks unlikely to over-expose wearers to CO2, even those with COPD

'Hi, this is the army': In Spain, troops tackle track-and-trace

IRON AND ICE
Hong Kong faithful pray for future under security crackdown

Millions on the move as China eyes holiday bounce

China anniversary arrests as Hong Kong leader hails 'return to peace'

Families fear for Hong Kong fugitives in China custody

IRON AND ICE
Death toll rises to 11 in Colombia rioting over police killing

USS Detroit deployed for counternarcotics operations

Mexico to probe extrajudicial killing by army; 6 killed as Peru forces clash traffickers

'Virtual kidnappings' warning for Chinese students in Australia

IRON AND ICE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.