Medical and Hospital News  
STELLAR CHEMISTRY
NASA's fermi sees gamma rays from 'hidden' solar flares
by Staff Writers
Greenbelt MD (SPX) Jan 31, 2017


These solar flares were imaged in extreme ultraviolet light by NASA's STEREO satellites, which at the time were viewing the side of the sun facing away from Earth. All three events launched fast coronal mass ejections (CMEs). Although NASA's Fermi Gamma-ray Space Telescope couldn't see the eruptions directly, it detected high-energy gamma rays from all of them. Scientists think particles accelerated by the CMEs rained onto the Earth-facing side of the sun and produced the gamma rays. The central image was returned by the STEREO A spacecraft, all others are from STEREO B. Image courtesy NASA/STEREO. Watch a video on the research here.

An international science team says NASA's Fermi Gamma-ray Space Telescope has observed high-energy light from solar eruptions located on the far side of the sun, which should block direct light-from these events. This apparent paradox is providing solar scientists with a unique tool for exploring how charged particles are accelerated to nearly the speed of light and move across the sun during solar flares.

"Fermi is seeing gamma rays from the side of the sun we're facing, but the emission is produced by streams of particles blasted out of solar flares on the far side of the sun," said Nicola Omodei, a researcher at Stanford University in California. "These particles must travel some 300,000 miles within about five minutes of the eruption to produce this light."

Omodei presented the findings on Monday, Jan. 30, at the American Physical Society meeting in Washington, and a paper describing the results will be published online in The Astrophysical Journal on Jan. 31.

Fermi has doubled the number of these rare events, called behind-the-limb flares, since it began scanning the sky in 2008. Its Large Area Telescope (LAT) has captured gamma rays with energies reaching 3 billion electron volts, some 30 times greater than the most energetic light previously associated with these "hidden" flares.

Thanks to NASA's Solar Terrestrial Relations Observatory (STEREO) spacecraft, which were monitoring the solar far side when the eruptions occurred, the Fermi events mark the first time scientists have direct imaging of beyond-the-limb solar flares associated with high-energy gamma rays.

"Observations by Fermi's LAT continue to have a significant impact on the solar physics community in their own right, but the addition of STEREO observations provides extremely valuable information of how they mesh with the big picture of solar activity," said Melissa Pesce-Rollins, a researcher at the National Institute of Nuclear Physics in Pisa, Italy, and a co-author of the paper.

The hidden flares occurred Oct. 11, 2013, and Jan. 6 and Sept. 1, 2014. All three events were associated with fast coronal mass ejections (CMEs), where billion-ton clouds of solar plasma were launched into space. The CME from the most recent event was moving at nearly 5 million miles an hour as it left the sun. Researchers suspect particles accelerated at the leading edge of the CMEs were responsible for the gamma-ray emission.

Large magnetic field structures can connect the acceleration site with distant part of the solar surface. Because charged particles must remain attached to magnetic field lines, the research team thinks particles accelerated at the CME traveled to the sun's visible side along magnetic field lines connecting both locations.

As the particles impacted the surface, they generated gamma-ray emission through a variety of processes. One prominent mechanism is thought to be proton collisions that result in a particle called a pion, which quickly decays into gamma rays.

In its first eight years, Fermi has detected high-energy emission from more than 40 solar flares. More than half of these are ranked as moderate, or M class, events. In 2012, Fermi caught the highest-energy emission ever detected from the sun during a powerful X-class flare, from which the LAT detected high-energy gamma rays for more than 20 record-setting hours.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Goddard Space Flight Center
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Fluctuations in extragalactic gamma rays reveal two source classes but no dark matter
Munich, Germany (SPX) Dec 21, 2016
Researchers from the Max Planck Institute for Astrophysics and the University of Amsterdam GRAPPA Center of Excellence just published the most precise analysis so far of the fluctuations in the gamma-ray background. They used more than six years of data gathered by the Fermi Large Area Telescope and found two different source classes contributing to the gamma-ray background. No traces of a ... read more


STELLAR CHEMISTRY
Leidos receives CBRNE simulation task order

Hollande urges Trump to 'respect' principle of accepting refugees

Climate change drove population decline in New World before Europeans arrived

Rich? Scared about the Trumpocalypse? Try New Zealand

STELLAR CHEMISTRY
India's Satnav Goes Out of Whack as Orbiting Atomic Clocks Break

First-ever GPS data release to boost space-weather science

NASA space radio could change how flights are tracked worldwide

ISRO to Launch Standby Navigation Satellite to Replace IRNSS-1A

STELLAR CHEMISTRY
Brain-computer interface allows completely locked-in people to communicate

Study finds genetic continuity between modern East Asia people and their Stone Age relatives

Girls less likely to associate 'brilliance' with their own gender

Scientists find link between brain shape and personality

STELLAR CHEMISTRY
Plants emit different odors when eaten by invasive species

Beleaguered bees hit by 'deformed wing virus'

Researchers develop label-free technique to image microtubules

Italy bows to howls over anti-wolf campaign

STELLAR CHEMISTRY
Bird flu outbreak spreads to Belgium

UTA materials scientist invents breath monitor to detect flu

Fears over bird flu in China after 9 deaths this year

Why Lyme disease is common in the north, rare in the south

STELLAR CHEMISTRY
'Abduction' of China tycoon sparks fear in Hong Kong

Missing Chinese billionaire targeted over stocks crash: report

Hong Kong leadership favourite testifies in corruption trial

Trump to ruffle feathers in Year of the Rooster

STELLAR CHEMISTRY
STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.