. Medical and Hospital News .




.
CHIP TECH
NIST compact frequency comb could go places
by Staff Writers
Washington DC (SPX) Oct 31, 2011

Stack of quartz optical "cavities" - precisely machined disks of solid quartz crystal - for use in NIST's compact laser frequency comb. (Only one is actually used.) A low-power infrared laser produces light that travels in a loop inside one of the cavities. Each cavity is 2 millimeters wide and shaped like a flat ellipse. Credit: S. Papp/NIST.

Laser frequency combs-extraordinarily precise tools for measuring frequencies (or colors) of light-have helped propel advances in timekeeping, trace gas detection and related physics research to new heights in the past decade. While typical lasers operate at only a single or handful of frequencies, laser frequency combs operate simultaneously at many frequencies, approaching a million for some combs.

These combs have very fine, evenly spaced "teeth," each a specific frequency, which can be used like hash marks on a ruler to measure the light emitted by lasers, atoms, stars or other objects. But frequency combs are usually bulky, delicate lab instruments-about the size of a typical suitcase-and challenging to operate, which limits their use.

Now, researchers at the National Institute of Standards and Technology (NIST) have developed a compact laser frequency comb,* a step toward user-friendly and ultimately chip-based combs that could enable new applications in astronomical searches for Earth-like planets, high-capacity telecommunications, and-if other components are miniaturized as well-portable versions of the most advanced atomic clocks. Large frequency combs are best known as the "gears" in today's room-sized versions of these clocks.

NIST's prototype micro-comb consists of a low-power semiconductor laser about the size of a shoebox and a high-quality optical cavity just 2 millimeters wide. A miniature laser like those in DVD players might be substituted in the future to squeeze the whole comb apparatus onto a microchip.

Compact frequency combs have been developed recently by a number of other research groups, but NIST's is the first to use a cavity made of fused silica, or quartz, the most common optical material. This means it could be integrated easily with other optical and photonic components, lead author Scott Papp says.

A full-size frequency comb uses a high-power, ultrafast laser.** By contrast, the new compact version relies on a low-power laser and the cavity's unusual properties.

The cavity is designed to limit light dispersion and confine the light in a small space to enhance intensity and optical interactions.

The infrared laser light travels in a loop inside the cavity, generating a train of very short pulses and a spectrum of additional shades of infrared light.

The small cavity, with no moving parts, offers insight into basic processes of frequency combs, which are difficult to observe in large versions.

Among its desirable features, NIST's compact comb has wide spacing between the teeth-10 to 100 times wider than that found in typical larger combs. This spacing allows scientists to more easily measure and manipulate the teeth.

Of particular interest to project leader Scott Diddams, the widely spaced teeth can be individually read by astronomical instruments.

Portable frequency combs can thus be used as ultrastable frequency references in the search for Earth-like planets orbiting distant stars.*** Portable frequency combs can also have many other important applications.

For example, because a frequency comb can simultaneously generate hundreds of telecommunication channels from a single low-power source, a micro-comb might eventually replace individual lasers now used for each channel in fiber-optic telecommunications.

"We hope this is just the beginning and look forward to bigger and better developments," Diddams says. "In the short term we want to learn if this new type of comb can one day replace ultrafast laser-based combs used with NIST's best atomic clocks. And if not, its small size will likely lead to other opportunities."

The research was supported in part by the Defense Advanced Research Projects Agency.

* S.B. Papp and S.A. Diddams. Spectral and temporal characterization of a fused-quartz microresonator optical frequency comb. Physical Review A. Forthcoming.

** See background on optical frequency combs here.

*** See 2009 Tech Beat article, "NIST, CU to Build Instrument to Help Search for Earth-like Planets,"

Related Links
National Institute of Standards and Technology (NIST)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
Superlattice Cameras Add More 'Color' to Night Vision
Evanston IL (SPX) Oct 24, 2011
Recent breakthroughs have enabled scientists from the Northwestern University's Center for Quantum Devices to build cameras that can see more than one optical waveband or "color" in the dark. The semiconducting material used in the cameras - called type-II superlattices - can be tuned to absorb a wide range of infrared wavelengths, and now, a number of distinct infrared bands at the same t ... read more


CHIP TECH
Lawyers launch Fukushima compensation team

Turkey quake toll nears 600 as search efforts wind down

Teenager saved days after Turkey quake as toll reaches 550

Nuclear pollution of sea from Fukushima was world's biggest

CHIP TECH
Russia to launch four Glonass satellites in November

One Soyuz launcher, two Galileo satellites, three successes for Europe

Soyuz places Galileo satellites in orbit - mission control

GPS shoes for Alzheimer's patients to hit US

CHIP TECH
Governments must plan for migration in response to climate change

For US, world's population is growing a bit slower

Study uncovers physiological nature of disgust in politics

Computer scientist cracks mysterious Copiale Cipher

CHIP TECH
Malaysia seizes 450 protected snakes, turtles

Scientists confirm fungus as US bat-killer

Junk DNA Defines Differences Between Humans and Chimps

Genetic Evidence Confirms Coyote Migration Route to Virginia and Hybridization with Wolves

CHIP TECH
First Ebola-like virus native to Europe discovered

West Nile Virus Transmission Linked with Land-Use Patterns and Super-spreaders

WHO warns of disease risk in flood-hit Thailand

Google Earth typhoid maps reveal secrets of disease outbreaks

CHIP TECH
Traffic accident in China sparks violent protest

China to maintain strict 'one child' policy

China activists clamour for blind lawyer

China censors web after tax riots

CHIP TECH
S.Africa navy chief warns pirates could head south

Kenya to pursue kidnappers into Somalia: minister

China urges investigation of Mekong attack

China summons diplomats after deadly Mekong boat raid

CHIP TECH
Japan will keep buying EU bailout bonds: Regling

China pledges 'active support' for debt-stricken Europe

Europe's fears over China overblown, experts say

Walker's World: Euro for sale


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement