Medical and Hospital News  
NANO TECH
Nano-coating makes coaxial cables lighter
by Staff Writers
Houston TX (SPX) Jan 29, 2016


A coating of carbon nanotubes, seen through a clear jacket, replaces a braided metal outer conductor in an otherwise standard coaxial data cable. Rice University scientists designed the cable to save weight for aerospace applications. Image courtesy Jeff Fitlow and Rice University. For a larger version of this image please go here.

Common coaxial cables could be made 50 percent lighter with a new nanotube-based outer conductor developed by Rice University scientists.

The Rice lab of Professor Matteo Pasquali has developed a coating that could replace the tin-coated copper braid that transmits the signal and shields the cable from electromagnetic interference. The metal braid is the heaviest component in modern coaxial data cables.

The research appears this month in the American Chemical Society journal ACS Applied Materials and Interfaces.

Replacing the outer conductor with Rice's flexible, high-performance coating would benefit airplanes and spacecraft, in which the weight and strength of data-carrying cables are significant factors in performance.

Rice research scientist Francesca Mirri, lead author of the paper, made three versions of the new cable by varying the carbon-nanotube thickness of the coating. She found that the thickest, about 90 microns - approximately the width of the average human hair - met military-grade standards for shielding and was also the most robust; it handled 10,000 bending cycles with no detrimental effect on the cable performance.

"Current coaxial cables have to use a thick metal braid to meet the mechanical requirements and appropriate conductance," Mirri said. "Our cable meets military standards, but we're able to supply the strength and flexibility without the bulk."

Coaxial cables consist of four elements: a conductive copper core, an electrically insulating polymer sheath, an outer conductor and a polymer jacket. The Rice lab replaced only the outer conductor by coating sheathed cores with a solution of carbon nanotubes in chlorosulfonic acid.

Compared with earlier attempts to use carbon nanotubes in cables, this method yields a more uniform conductor and has higher throughput, Pasquali said. "This is one of the few cases where you can have your cake and eat it, too," he said. "We obtained better processing and improved performance."

Replacing the braided metal conductor with the nanotube coating eliminated 97 percent of the component's mass, Mirri said.

She said the lab is working on a method to scale up production. The lab is drawing on its experience in producing high-performance nanotube-based fibers.

"It's a very similar process," Mirri said.

"We just need to substitute the exit of the fiber extrusion setup with a wire-coating die. These are high-throughput processes currently used in the polymer industry to make a lot of commercial products. The Air Force seems very interested in this technology, and we are currently working on a Small Business Innovation Research project with the Air Force Research Laboratory to see how far we can take it."

Co-authors of the paper are graduate students Robert Headrick and Amram Bengio and alumni April Choi and Yimin Luo, all of Rice; Nathan Orloff, Aaron Forster, Angela Hight Walker, Paul Butler and Kalman Migler of the National Institute of Standards and Technology (NIST); Rana Ashkar of NIST, the University of Maryland and Oak Ridge National Laboratory; and Christian Long of NIST and the University of Maryland.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rice University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Microwaved nanotubes come up clean
Houston TX (SPX) Jan 26, 2016
Amid all the fancy equipment found in a typical nanomaterials lab, one of the most useful may turn out to be the humble microwave oven. A standard kitchen microwave proved effective as part of a two-step process invented at Rice and Swansea universities to clean carbon nanotubes. Basic nanotubes are good for many things, like forming into microelectronic components or electrically conducti ... read more


NANO TECH
China pushes inferno documentary into purgatory

Charities warn of 'desperate' plight of refugees in snow

Nepal quake rebuilding to take years, new chief says

MH370 search finds new shipwreck, but no plane

NANO TECH
PSLV launches India's 5th navigation satellite

Trimble to provide GPS survey systems for U.S. Marines

SMC releases RFP for GPS III Space Vehicles

GPS vultures swoop down on illegal dumps in Peru

NANO TECH
The indications of a new geological epoch marked by human impact are clear

Why are habits so hard to break

Evidence of a prehistoric massacre extends the history of warfare

Dartmouth study helps fill in gaps in our visual perception

NANO TECH
Study: Bigger animal brains enable better problem solving

Finland begins controversial wolf hunt

Hunting secrets of the Venus flytrap

Newly discovered photosynthetic bacteria is surprisingly abundant

NANO TECH
11 swine flu deaths in Syria since September: health ministry

US Army probe blames leadership in anthrax shipment scandal

Ebola epidemic is over but expect flare-ups: UN

Experimental immunotherapy zaps 2 most lethal Ebola virus strains

NANO TECH
China releases Swedish rights activist: Stockholm

Missing bookseller met wife in China: HK police

'Corrupt' Chinese officials seized nearly $1 bn: analysis

Sanction Chinese state media: advocacy group

NANO TECH
Two Mexican marines, suspect killed in shootout

U.S., U.K. help build West African partners' anti-piracy capabilities

NANO TECH
China pours $67 bn into financial system before holiday

China state media accuse Soros of 'declaring war' on yuan

IMF's Lagarde says China slowdown 'normal' but bumps ahead

Slowing growth and jihadist threat worry the elite at Davos









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.