Medical and Hospital News  
NANO TECH
Nano-infused ceramic could report on its own health
by Staff Writers
Houston TX (SPX) Feb 06, 2019

Ceramics with networked nanosheets of graphene and white graphene would have the unique ability to alter their electrical properties when strained, according to a researcher at Rice University. The surprising ability could lead to new types of structural sensors.

A ceramic that becomes more electrically conductive under elastic strain and less conductive under plastic strain could lead to a new generation of sensors embedded into structures like buildings, bridges and aircraft able to monitor their own health.

The electrical disparity fostered by the two types of strain was not obvious until Rice University's Rouzbeh Shahsavari, an assistant professor of civil and environmental engineering and of materials science and nanoengineering, and his colleagues modeled a novel two-dimensional compound, graphene-boron-nitride (GBN).

Under elastic strain, the internal structure of a material stretched like a rubber band does not change. But the same material under plastic strain - caused in this case by stretching it far enough beyond elasticity to deform - distorts its crystalline lattice. GBN, it turns out, shows different electrical properties in each case, making it a worthy candidate as a structural sensor.

Shahsavari had already determined that hexagonal-boron nitride - aka white graphene - can improve the properties of ceramics. He and his colleagues have now discovered that adding graphene makes them even stronger and more versatile, along with their surprising electrical properties.

The magic lies in the ability of two-dimensional, carbon-based graphene and white graphene to bond with each other in a variety of ways, depending on their relative concentrations. Though graphene and white graphene naturally avoid water, causing them to clump, the combined nanosheets easily disperse in a slurry during the ceramic's manufacture.

The resulting ceramics, according to the authors' theoretical models, would become tunable semiconductors with enhanced elasticity, strength and ductility.

The research led by Shahsavari and Asghar Habibnejad Korayem, an assistant professor of structural engineering at Iran University of Science and Technology and a research fellow at Monash University in Melbourne, Australia, appears in the American Chemical Society journal Applied Materials and Interfaces.

Graphene is a well-studied form of carbon known for its lack of a band gap - the region an electron has to leap to make a material conductive. With no band gap, graphene is a metallic conductor. White graphene, with its wide band gap, is an insulator. So the greater the ratio of graphene in the 2D compound, the more conductive the material will be.

Mixed into the ceramic in a high enough concentration, the 2D compound dubbed GBN would form a network as conductive as the amount of carbon in the matrix allows. That gives the overall composite a tunable band gap that could lend itself to a variety of electrical applications.

"Fusing 2D materials like graphene and boron nitride in ceramics and cements enables new compositions and properties we can't achieve with either graphene or boron nitride by themselves," Shahsavari said.

The team used density functional theory calculations to model variations of the 2D compound mixed with tobermorite, a calcium silicate hydrate material commonly used as cement for concrete. They determined the oxygen-boron bonds formed in the ceramic would turn it into a p-type semiconductor.

Tobermorite by itself has a large band gap of about 4.5 electron volts, but the researchers calculated that when mixed with GBN nanosheets of equal parts graphene and white graphene, that gap would shrink to 0.624 electron volts.

When strained in the elastic regime, the ceramic's band gap dropped, making the material more conductive, but when stretched beyond elasticity - that is, in the plastic regime - it became less conductive. That switch, the researchers said, makes it a promising material for self-sensing and structural health monitoring applications.

The researchers suggested other 2D sheets with molybdenum disulfide, niobium diselenide or layered double hydroxides may provide similar opportunities for the bottom-up design of tunable, multifunctional composites. "This would provide a fundamental platform for cement and concrete reinforcement at their smallest possible dimension," Shahsavari said.

Research paper


Related Links
Rice University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Aerosol-assisted biosynthesis strategy enables functional bulk nanocomposites
Beijing, China (SPX) Jan 29, 2019
In the movie Avengers: Infinity War, one of the coolest scenes occurs when Iron Man activates his nanotech armor and controls nanoparticles to form the armor upon his skin. Actually, developing such a technique to assemble nanomaterials into macroscopic bulk materials that maintain their unique nanoscale properties is still a challenging task for scientists in the real world. Meanwhile, it is also a core issue that hampers the practical industrial application of nanomaterials. One possible solutio ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Drought, Deluge Turned Stable Landslide into Disaster

Study reveals wildlife is abundant in Chernobyl

Chinese chemical firm 'misled' investigators over deadly blast

US sends 3,750 more troops to Mexico border: Pentagon

NANO TECH
Magnetic north pole leaves Canada, on fast new path

Kite-blown Antarctic explorers make most southerly Galileo positioning fix

NOAA releases early update for World Magnetic Model

BeiDou achieves real-time transmission of deep-sea data

NANO TECH
Western lowland gorillas enjoy peaceful, dynamic familial relations

Chimpanzees become expert nut-crackers faster than humans

A taste for fat may have made us human

The Caucasus: Complex interplay of genes and cultures

NANO TECH
Ice Age survivors or stranded travellers? A new subterranean species discovered in Canada

Leaves are nature's most sophisticated environment sensors

India's 'granny' elephant dies aged 88

Venom potency varies from snake to snake, even in same population

NANO TECH
Protecting those on the frontline from Ebola

China disciplines 80 officials linked to major vaccine scandal

Researchers develop new approach for vanquishing superbugs

Hong Kong scientists claim 'broad-spectrum' antiviral breakthrough

NANO TECH
Chinese 'underground' bishop gains official recognition: state media

Muse: Myanmar's militia-run, billion-dollar gateway to China

Followed, harassed: foreign reporters say China work conditions worsen

US urges release of Chinese lawyer jailed for subversion

NANO TECH
NANO TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.