Medical and Hospital News  
CARBON WORLDS
Nanodiamonds as photocatalysts
by Staff Writers
Berlin, Germany (SPX) Oct 19, 2018

Doped diamond foam.

Climate change is in full swing and will continue unabated as long as we do not succeed in significantly reducing CO2 emissions. For this we need all the options. One idea is to return the greenhouse gas CO2 to the energy cycle: CO2 could be processed with water into methanol, a fuel that can be excellently transported and stored.

However, the reaction, which is reminiscent of a partial process of photosynthesis, requires energy and catalysts. If we succeed in using this energy from sunlight and developing light-active photocatalysts that are not made of rare metals such as platinum, but of inexpensive and abundantly available materials, there would be a chance of "green" solar fuels being produced in a climate-neutral way.

Diamond Nanomaterials need UV for activation
A candidate for such photocatalysts are so-called diamond nanomaterials - these are not precious crystalline diamonds, but tiny nanocrystals of a few thousand carbon atoms that are soluble in water and look more like black slurry, or nanostructured "carbon foams" with high surface area.

In order for these materials to become catalytically active, however, they require UV light excitation. Only this spectral range of sunlight is rich enough in energy to transport electrons from the material into a "free state". Only then solvated electrons can be emitted in water and react with the dissolved 2 to form methanol.

Can doping help?
However, the UV component in the solar spectrum is not very high. Photocatalysts that could also use the visible spectrum of sunlight would be ideal. This is where the work of HZB-scientist Tristan Petit and his cooperation partners in DIACAT comes in: modelling the energy levels in such materials, performed by Karin Larsson in Uppsala University, shows that intermediate stages can be built into the band gap by doping with foreign atoms. Boron, a trivalent element, appears to be particularly important.

Experiments at BESSY II show: yes, but...
Petit and his team therefore investigated samples of polycrystalline diamonds, diamond foams and nanodiamonds. These samples had previously been synthesized in the groups of Anke Kruger in Wurzburg and Christoph Nebel in Freiburg. At BESSY II, X-ray absorption spectroscopy was used to precisely measure the unoccupied energy states where electrons could possibly be excited by visible light.

"The boron atoms present near the surface of these nanodiamonds actually lead to the desired intermediate stages in the band gap," explains Ph.D student Sneha Choudhury, first author of the study. These intermediate stages are typically very close to the valence bands and thus do not allow the effective use of visible light. However, the measurements show that this also depends on the structure of the nanomaterials.

Outlook: Morphology and doping with P or N
"We can introduce and possibly control such additional steps in the diamond bandgap by specifically modifying the morphology and doping," says Tristan Petit. Doping with phosphorus or nitrogen could also offer new opportunities.

Research paper


Related Links
Helmholtz-Zentrum Berlin fur Materialien und Energie
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
Exploring new spintronics device functionalities in graphene heterostructures
London, UK (SPX) Oct 17, 2018
Graphene Flagship researchers have shown in a paper published in Science Advances how heterostructures built from graphene and topological insulators have strong, proximity induced spin-orbit coupling which can form the basis of novel information processing technologies. Spin-orbit coupling is at the heart of spintronics. Graphene's spin-orbit coupling and high electron mobility make it appealing for long spin coherence length at room temperature. Graphene Flagship researchers showed a stron ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Indonesia drops disinfectant on quake-hit Palu

UN Security Council to meet on Myanmar atrocities report

In hurricane-hit Mexico Beach, a marathon clean-up begins

Boulders litter Uganda villages crushed by deadly landslide

CARBON WORLDS
China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

CARBON WORLDS
Lifespan 2040 ranking: US down, China up, Spain on top

Dry conditions in East Africa half a million years ago possibly shaped human evolution

City of Koh Ker was occupied for centuries longer than previously thought

Humans may have colonized Madagascar later than previously thought

CARBON WORLDS
Mammals cannot evolve fast enough to escape current extinction crisis

Research gives new insight into the evolution of the nervous system

Two degrees decimated Puerto Rico's insect populations

Dandelion seeds use a novel form of flight to get around

CARBON WORLDS
15 emerging technologies that could reduce global catastrophic biological risks

Vaccinating humans to protect mosquitoes from malaria

A step towards biological warfare with insects?

100 years on, Spanish Flu holds lessons for next pandemic

CARBON WORLDS
China propaganda chief warns Hong Kong media over 'interference': reports

Hong Kong mega bridge launch announcement sparks backlash

Ex-chief of China asset management firm prosecuted for graft

Chinese live-streamer held for 'insulting' national anthem

CARBON WORLDS
New president to inherit a Mexico plagued with grisly violence

Vessel tracking exposes the dark side of trading at sea

CARBON WORLDS








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.