Medical and Hospital News  
SPACE MEDICINE
Nanofiber-based wound dressings induce production of antimicrobial peptide
by Staff Writers
Corvallis OR (SPX) Jul 18, 2018

File image of peptide-nanofibers.

Nanofiber-based wound dressings loaded with vitamin D spur the production of an antimicrobial peptide, a key step forward in the battle against surgical site infections, or SSIs.

The findings by Oregon State University researchers and other collaborators, published Wednesday in Nanomedicine, are important because SSIs are the most common healthcare-associated infection and result in widespread human suffering and economic loss.

Each year in the U.S. alone, nearly 300,000 surgical patients develop an infection within 30 days of their operation - accounting for an estimated $10 billion in additional healthcare costs - and more than 13,000 of those people die.

Researchers used electrospinning to prepare dressings containing the bioactive form of vitamin D: 1,25-dihydroxyvitamin D3, or 1,25(OH)2D3.

"Electrospinning is a versatile, simple, cost-effective and reproducible technique for generating long fibers with nanoscale diameters," said Adrian Gombart, co-corresponding author and professor of biochemistry and biophysics in OSU's College of Science.

"Electrospun nanofiber wound dressings offer significant advantages over hydrogels or sponges for local drug delivery. They provide several functional and structural advantages, including scar-free healing."

The dressings the researchers created proved capable of delivering vitamin D on a sustained basis over four weeks, and they significantly induced production of a peptide, hCAP18/LL37, that kills microbes by disrupting their membranes.

"In past research with nanofiber-based sutures we used the inactive form of vitamin D - which is 25-hydroxyvitamin D3 - and a toll-like receptor ligand that was activating cells to convert 25D3 to the bioactive form, 1,25D3," said the other co-corresponding author, Jingwei Xie, assistant professor at the University of Nebraska Medical Center.

"Here we bypassed that and went straight to the active form. The dressing just released it and it started turning on the vitamin D target genes, one of which produces the LL37 peptide."

Because the dressings work by enhancing innate immune responses rather than by containing conventional, single-target antimicrobial compounds, they are less likely to contribute to drug resistance. The dressings were tested on human skin (collected from plastic surgery patients) in a culture dish, as well as in vitro with keratinocyte and monocyte cell lines, and in vivo in a mouse model.

"This study was proof of principle," said co-author Arup Indra, associate professor of pharmacy at OSU.

"It looks like we can induce the genes in a model system and now we can start looking at healing and infection."

In addition to Indra, Xie and Gombart, a principal investigator at OSU's Linus Pauling Institute, the collaboration also included OSU pharmacy research associate professor Gitali Indra and scientists from the University of California, San Diego, and the VA Nebraska-Western Iowa Health Care System.

"Our study suggests that 1,25D3-induced expression of hCAP18 by these nanofiber dressings is a step forward to improving wound healing," Gitali Indra said.

Research paper


Related Links
Oregon State University
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
MyotonPRO tests muscle tension and stiffness
Paris (ESA) Jul 11, 2018
This gadget looks like a precursor to the devices medical officers use to scan patients in science fiction, and it is not far off. The MyotonPRO tests muscle tension and stiffness. The device is being used on the International Space Station by ESA astronaut Alexander Gerst. Part of the Myotones experiment, Alexander is using the smart-phone-sized device to investigate the human resting muscle tone system. By default, our muscles are always slightly contracted. This is how we maintain posture ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
In storm-hit Barbuda, China fills void left by Western 'neglect'

'Jet engine' sound, tremors send Afghan villagers fleeing deadly landslide

Japan firms used foreign trainees at Fukushima cleanup

Thai boys were sedated and stretchered from cave in dramatic rescue

SPACE MEDICINE
Next four Galileo satellites fuelled for launch

NASA Tests Solar Sail for CubeSat that Will Study Near-Earth Asteroids

India's Domestic SatNav System Hits Major Roadblock Ahead of Commercial Release

Russia launches Soyuz-21b with Glonass-M navigation satellite

SPACE MEDICINE
Eating bone marrow played a key role in the evolution of the human hand

Humans evolved in small groups across diverse environs in Africa

More than a quarter of the globe is controlled by indigenous groups

Primates adjust grooming to their social environment

SPACE MEDICINE
Spiders go ballooning on electric fields

Nepal embarks on "rhino diplomacy" with rare gift to China

New venomous snake species found in Australia

Illegal ivory openly sold across Europe: study

SPACE MEDICINE
Help NASA Track and Predict Mosquito-Borne Disease Outbreaks

Spot a rat? Real-time map aims to plot Paris sightings

US fears of 'mystery weapon' revived by new China diplomat cases

Dialing up the body's defenses against public health threats

SPACE MEDICINE
Hong Kong police seek landmark ban on pro-independence party

Hong Kong activists mark one year since Liu Xiaobo death

Chinese democracy activist sentenced to 13 years for 'subversion'

Beijing eyes UNESCO status for Mao tomb, Tiananmen Square

SPACE MEDICINE
Three Mexican soldiers killed in ambush

US targets Chinese fentanyl 'kingpin' with sanctions

SPACE MEDICINE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.