Medical and Hospital News  
CARBON WORLDS
Nanoscale thermometers from diamond sparkles
by Staff Writers
Sydney, Australia (SPX) May 06, 2019

file illustration only

Being able to measure, and monitor, temperatures and temperature changes at miniscule scales--inside a cell or in micro and nano-electronic components--has the potential to impact many areas of research from disease detection to a major challenge of modern computation and communication technologies, how to measure scalability and performance in electronic components.

A collaborative team, led by scientists from the University of Technology Sydney (UTS), developed a highly-sensitive nano-thermometer that uses atom-like inclusions in diamond nanoparticles to accurately measure temperature at the nanoscale. The sensor exploits the properties of these atom-like diamond inclusions on the quantum level, where the limits of classical physics no longer apply.

Diamond nanoparticles are extremely small particles--up to 10,000 times smaller than the width of a human hair--that fluoresce when illuminated with a laser.

Senior Investigator, Dr Carlo Bradac, UTS School of Mathematical and Physical Sciences, said the new technique was not just a "proof-of-concept realisation."

"The method is immediately deployable. We are currently using it for measuring temperature variations both in biological samples and in high-power electronic circuits whose performance strongly rely on monitoring and controlling their temperature with sensitivities and at a scale hard to achieve with other methods," Dr Bradac said.

The study published in Science Advances, is a collaboration between UTS researchers and international collaborators from the Russian Academy of Science (RU), Nanyang Technological University (SG) and Harvard University (US).

Lead author, UTS physicist Dr Trong Toan Tran, explained that although pure diamond is transparent it "usually contains imperfections such as inclusions of foreign atoms."

"Beyond giving the diamond different colours, yellow, pink, blue, etc. the imperfections emit light at specific wavelengths [colours] when probed with a laser beam," says Dr Tran.

The researchers found that there is a special regime--referred to as Anti-Stokes--in which the intensity of the light emitted by these diamond colour impurities depends very strongly on the temperature of the surrounding environment. Because these diamond nanoparticles can be as small as just a few nanometres they can be used as tiny nano-thermometers.

"We immediately realised we could harness this peculiar fluorescence-temperature dependence and use diamond nanoparticles as ultra-small temperature probes," Dr Bradac said.

"This is particularly attractive as diamond is known to be non-toxic--thus suitable for measurements in delicate biological environments--as well as extremely resilient--hence ideal for measuring temperatures in very harsh environments up to several hundreds of degrees," he added.

The researchers say that an important advantage of the technique is that it is all-optical. The measurement only requires placing a droplet of the nanoparticles-in-water solution in contact with the sample and then measuring--non-invasively--their optical fluorescence as a laser beam is shone on them.

Although similar all-optical approaches using nanoparticles have successfully measured temperatures at the nanoscale, the research team believes that none have been able to achieve both the sensitivity and the spatial resolution of the technique developed at UTS. "We believe our sensor can measure temperatures with a sensitivity which is comparable--or superior--to that of the current best all-optical micro- and nano-thermometers, while featuring the highest spatial resolution to date," Dr Tran said.

The researchers at UTS highlighted that nanoscale thermometry was the most obvious--yet far from the only--application exploiting the Anti-Stokes regime in quantum systems. The regime can form the basis for exploring fundamental light-matter interactions in isolated quantum systems at energies conventionally unexplored. It opens up new possibilities for a plethora of practical nanoscale sensing technologies, some as exotic as optical refrigeration where light is used to cool down objects.

Research paper


Related Links
University of Technology Sydney
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
Researchers design a strategy to make graphene luminescent
Cordoba, Spain (SPX) May 01, 2019
Lighter than aluminum, harder than a diamond, more elastic than rubber and tougher than steel. These are only a few of the characteristics of graphene, a super material that acts as an excellent heat and electrical conductor. Due to its features, it is called upon to be a key player in future technological advances in the fields of research, electronics, IT and medicine. The FQM-346 Organic Chemistry research group at the University of Cordoba came up with the way this material acts in a luminesce ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
What next for cyclone-hit Mozambique?

Jihadist attacks threaten relief efforts in cyclone-hit Mozambique

Praise for India's response to devastating cyclone

Preventing collapse after catastrophe

CARBON WORLDS
CGI and Thales sign contract for secure Galileo satellite navigation services

GSA launches testing campaign for agriculture receivers

China launches new BeiDou satellite

Industry collaboration on avionics paves the way for GAINS navigation demonstration flights

CARBON WORLDS
The building blocks for astronomically literate citizens

Middle Pleistocene human skull reveals variation and continuity in early Asian humans

Ancient human relative explains mountain gene mutation

Human ancestors were 'grounded,' new analysis shows

CARBON WORLDS
Pandas descend from carnivores, despite vegetarian diet

Here we go again: Earth's major 'mass extinctions'

A million species risk extinction, are we one of them?

Species conservation: some success, many failures

CARBON WORLDS
A Scent-Based Strategy for Preventing Mosquito Transmission of Disease

Pakistan police arrest doctor after 90 infected by HIV syringe

Mother detained after Chinese vaccine protest

Child vaccination levels falling short in large parts of Africa

CARBON WORLDS
Wife of jailed China rights lawyer pleads to see him

Working stiffs: China's tech minions burn out in '996' rat race

Xi urges youth to 'love' the Communist Party

Huge Hong Kong protest against China extradition plan

CARBON WORLDS
ICC president urges US to join global criminal court

Italy, Austria smash mafia arms trafficking ring: officials

Spain takes over EU anti-piracy mission from Britain due to Brexit

Sudan says Turkish naval ship to boost 'Red Sea security'

CARBON WORLDS








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.