Medical and Hospital News  
CHIP TECH
Neuron and synapse-mimetic spintronics devices developed
by Staff Writers
Sendai, Japan (SPX) Apr 23, 2019

This is a neuron and synapse in biological neural network.

A research group from Tohoku University has developed spintronics devices which are promising for future energy-efficient and adoptive computing systems, as they behave like neurons and synapses in the human brain.

Today's information society is built on digital computers that have evolved drastically for half a century and are capable of executing complicated tasks reliably. The human brain, by contrast, operates under very limited power and is capable of executing complex tasks efficiently using an architecture that is vastly different from that of digital computers.

So the development of computing schemes or hardware inspired by the processing of information in the brain is of broad interest to scientists in fields ranging from physics, chemistry, material science and mathematics, to electronics and computer science.

In computing, there are various ways to implement the processing of information by a brain. Spiking neural network is a kind of implementation method which closely mimics the brain's architecture and temporal information processing. Successful implementation of spiking neural network requires dedicated hardware with artificial neurons and synapses that are designed to exhibit the dynamics of biological neurons and synapses.

Here, the artificial neuron and synapse would ideally be made of the same material system and operated under the same working principle. However, this has been a challenging issue due to the fundamentally different nature of the neuron and synapse in biological neural networks.

The research group - which includes Professor Hideo Ohno (currently the university president), Associate Professor Shunsuke Fukami, Dr. Aleksandr Kurenkov and Professor Yoshihiko Horio - created an artificial neuron and synapse by using spintronics technology. Spintronics is an academic field that aims to simultaneously use an electron's electric (charge) and magnetic (spin) properties.

The research group had previously developed a functional material system consisting of antiferromagnetic and ferromagnetic materials. This time, they prepared artificial neuronal and synaptic devices microfabricated from the material system, which demonstrated fundamental behavior of biological neuron and synapse - leaky integrate-and-fire and spike-timing-dependent plasticity, respectively - based on the same concept of spintronics.

The spiking neural network is known to be advantageous over today's artificial intelligence for the processing and prediction of temporal information. Expansion of the developed technology to unit-circuit, block and system levels is expected to lead to computers that can process time-varying information such as voice and video with a small amount of power or edge devices that have the an ability to adopt users and the environment through usage.

Research paper


Related Links
Tohoku University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Singapore and Australian scientists build a machine to see all possible futures
Singapore (SPX) Apr 16, 2019
In the 2018 movie Infinity War, a scene featured Dr. Strange looking into 14 million possible futures to search for a single timeline where the heroes would be victorious. Perhaps he would have had an easier time with help from a quantum computer. A team of researchers from Nanyang Technological University, Singapore (NTU Singapore) and Griffith University in Australia have constructed a prototype quantum device that can generate all possible futures in a simultaneous quantum superposition. "When ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Nuclear fuel removed from crippled Japan plant

Two dead after apartment buildings collapse in rain-soaked Brazil

17 more detained over China blast that killed 78

Japan slams WTO ruling on S. Korea Fukushima food row

CHIP TECH
Industry collaboration on avionics paves the way for GAINS navigation demonstration flights

Record-Breaking Satellite Advances NASA's Exploration of High-Altitude GPS

China, Arab states eye closer cooperation on satellite navigation to build "Space Silk Road"

Second GPS III satellite arrives at Cape Canaveral ahead of July launch

CHIP TECH
Heads in the cloud: Scientists predict internet of thoughts 'within decades'

Multiple Denisovan-related ancestries in Papuans

New species of early human found in the Philippines

Need for social skills helped shape modern human face

CHIP TECH
Bacteria use viruses to differentiate themselves from their competitors

How plants defend themselves

Long-lived bats could hold secrets to mammal longevity

Bacteria in the human body are sharing genes, even across tissue boundaries

CHIP TECH
Child vaccination levels falling short in large parts of Africa

Space-enabled mobile laboratory ready for medical emergencies

Cyclone-hit Mozambique fears cholera epidemic

Cholera cases rise to 139 as Mozambique prepares mass vaccinations

CHIP TECH
Prague honours late Chinese dissident Liu with bust

'Masters of our destiny': Myanmar's Wa rebels in show of force

'Masters of our destiny': Myanmar's Wa rebels in show of force

Blog fined for "defaming" Beijng buildings over feng shui

CHIP TECH
ICC president urges US to join global criminal court

Italy, Austria smash mafia arms trafficking ring: officials

Spain takes over EU anti-piracy mission from Britain due to Brexit

Sudan says Turkish naval ship to boost 'Red Sea security'

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.