. Medical and Hospital News .




CHIP TECH
New 2D material for next generation high-speed electronics
by Staff Writers
Melbourne, Australia (SPX) Jan 23, 2013


Artist impression of high carrier mobility through layered molybdenum oxide crystal lattice. Credit: Dr Daniel J White, ScienceFX.

The material - made up of layers of crystal known as molybdenum oxides - has unique properties that encourage the free flow of electrons at ultra-high speeds. In a paper published in the January issue of materials science journal Advanced Materials, the researchers explain how they adapted a revolutionary material known as graphene to create a new conductive nano-material.

Graphene was created in 2004 by scientists in the UK and won its inventors a Nobel Prize in 2010. While graphene supports high speed electrons, its physical properties prevent it from being used for high-speed electronics.

The CSIRO's Dr Serge Zhuiykov said the new nano-material was made up of layered sheets - similar to graphite layers that make up a pencil's core.

"Within these layers, electrons are able to zip through at high speeds with minimal scattering," Dr Zhuiykov said.

"The importance of our breakthrough is how quickly and fluently electrons - which conduct electricity - are able to flow through the new material."

RMIT's Professor Kourosh Kalantar-zadeh said the researchers were able to remove "road blocks" that could obstruct the electrons, an essential step for the development of high-speed electronics.

"Instead of scattering when they hit road blocks, as they would in conventional materials, they can simply pass through this new material and get through the structure faster," Professor Kalantar-zadeh said.

"Quite simply, if electrons can pass through a structure quicker, we can build devices that are smaller and transfer data at much higher speeds.

"While more work needs to be done before we can develop actual gadgets using this new 2D nano-material, this breakthrough lays the foundation for a new electronics revolution and we look forward to exploring its potential."

In the paper titled 'Enhanced Charge Carrier Mobility in Two-Dimensional High Dielectric Molybdenum Oxide,' the researchers describe how they used a process known as "exfoliation" to create layers of the material ~11 nm thick.

The material was manipulated to convert it into a semiconductor and nanoscale transistors were then created using molybdenum oxide.

The result was electron mobility values of >1,100 cm2/Vs - exceeding the current industry standard for low dimensional silicon.

The work, with RMIT doctoral researcher Sivacarendran Balendhran as the lead author, was supported by the CSIRO Sensors and Sensor Networks Transformational Capability Platform and the CSIRO Materials Science and Engineering Division.

It was also a result of collaboration between researchers from Monash University, University of California - Los Angeles (UCLA), CSIRO, Massachusetts Institute of Technology (MIT) and RMIT.

.


Related Links
Materials Science and Engineering at CSIRO
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





CHIP TECH
DARPA, Industry Collaborate to Knock Down Microelectronics Barriers
Washington DC (SPX) Jan 21, 2013
The inherent goodness of miniaturizing electronics has been key to a wide array of technology innovations and an important economic driver for several decades. For example, the seemingly endless shrinking of the transistor has allowed the semiconductor industry to place ever more devices on the same amount of silicon. Each time the size shrunk, transistors became faster and used less power, allo ... read more


CHIP TECH
Kerry urges 'fresh thinking' to tackle global woes

Boss of Fukushima operator quizzed for negligence

Philippines typhoon victims need more help: UN

Canada to resettle up to 5,000 Iranian, Iraqi refugees

CHIP TECH
AFRL Selects Surrey Satellite US to Evaluate Small Satellite Approach to GPS

Lockheed Martin Awarded Contract to Sustain Ground Station for Global Positioning System

China promotes Beidou technology on transport vehicles

New location system could compete with GPS

CHIP TECH
Bindi Irwin slams Hillary Clinton editors over essay

A relative from the Tianyuan Cave

Four-stranded 'quadruple helix' DNA structure proven to exist in human cells

Geneticist wants to revive Neanderthals

CHIP TECH
Namibia offers model to tackle poaching scourge

Treat illegal wildlife trade as serious crime: CITES

Odd biochemistry yields lethal bacterial protein

Extinction fears 'alarmist': study

CHIP TECH
Swine flu kills three in Central Europe

Two Cambodians die from bird flu: WHO

Origin of HIV put at millions of years ago

One in five were infected by pandemic flu

CHIP TECH
China woman held in morgue for three years: media

China tries two Tibetan self-immolation 'inciters': media

China's mass annual New Year migration begins

China dissident makes film on disputed death

CHIP TECH
11 kidnapped Sudanese freed in Darfur: media

Britain earmarks $3.56M for anti-piracy

Several killed in failed French raid to free Somalia hostage

Police among dead in gambling shootout

CHIP TECH
Uruguay faces further dips in growth

China manufacturing growth hits two-year high

BoJ meeting expected to usher in fresh easing measures

Wen urges 'healthy' economy as China slows




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement