Medical and Hospital News  
BIO FUEL
New 3-D printed polymer can convert methane to methanol
by Staff Writers
Livermore CA (SPX) Jun 17, 2016


Lawrence Livermore National Laboratory chemist Sarah Baker holds a gas chromatography vial used to measure the amount of methanol produced by the enzyme-embedded polymer. Photos by George Kitrinos/LLNL. For a larger version of this image please go here.

Lawrence Livermore National Laboratory scientists have combined biology and 3-D printing to create the first reactor that can continuously produce methanol from methane at room temperature and pressure. The team removed enzymes from methanotrophs, bacteria that eat methane, and mixed them with polymers that they printed or molded into innovative reactors.

The research, which could lead to more efficient conversion of methane to energy production, appears in the June 15 edition of Nature Communications.

"Remarkably, the enzymes retain up to 100 percent activity in the polymer," said Sarah Baker, LLNL chemist and project lead. "The printed enzyme-embedded polymer is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas-liquid reactions."

Advances in oil and gas extraction techniques have made vast new stores of natural gas, composed primarily of methane, available. However, a large volume of methane is leaked, vented or flared during these operations, partly because the gas is difficult to store and transport compared to more-valuable liquid fuels.

Methane emissions also contribute about one-third of current net global warming potential, primarily from these and other distributed sources such as agriculture and landfills.

Current industrial technologies to convert methane to more valuable products, like steam reformation, operate at high temperature and pressure, require a large number of unit operations and yield a range of products. As a result, current industrial technologies have a low efficiency of methane conversion to final products and can only operate economically at very large scales

A technology to efficiently convert methane to other hydrocarbons is needed as a profitable way to convert "stranded" sources of methane and natural gas (sources that are small, temporary, or not close to a pipeline) to liquids for further processing, the team reported.

The only known catalyst (industrial or biological) to convert methane to methanol under ambient conditions with high efficiency is the enzyme methane monooxygenase (MMO), which converts methane to methanol.

The reaction can be carried out by methanotrophs that contain the enzyme, but this approach inevitably requires energy for upkeep and metabolism of the organisms. Instead, the team separated the enzymes from the organism and used the enzymes directly.

The team found that isolated enzymes offer the promise of highly controlled reactions at ambient conditions with higher conversion efficiency and greater flexibility.

"Up to now, most industrial bioreactors are stirred tanks, which are inefficient for gas-liquid reactions," said Joshuah Stolaroff, an environmental scientist on the team. "The concept of printing enzymes into a robust polymer structure opens the door for new kinds of reactors with much higher throughput and lower energy use."

The team found that the 3-D-printed polymer could be reused over many cycles and used in higher concentrations than possible with the conventional approach of the enzyme dispersed in solution.

Other Livermore team members include: Jennifer Knipe, Craig Blanchette, Joshua DeOtte, James Oakdale, Amitesh Maiti and Jeremy Lenhardt. The LLNL team collaborated with Northwestern University researchers Sarah Sirajuddin and Professor Amy Rosenzweig.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Livermore National Laboratory
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
BIO FUEL
Nissan bets on ethanol for fuel-cell vehicles
Tokyo (AFP) June 15, 2016
Nissan says it is developing fuel-cell technology that can power cars using plant-based ethanol, a first for the auto industry, and hopes to launch the system in time for Tokyo's 2020 Olympics. Japan's number-two automaker said its experimental technology would let vehicles drive more than 600 kilometres (375 miles) on a single fill, similar to gasoline-powered cars. Fuel cells work by c ... read more


BIO FUEL
Hundreds left homeless after Sri Lanka depot blast

Sri Lanka races to defuse bombs after depot blast

Thousands flee Sri Lanka ammunition depot explosions

Sri Lankan monks hold prayers for buried landslide victims

BIO FUEL
Russian Glonass-M satellite reaches target orbit

And yet it moves: 14 Galileo satellites now in orbit

Arianespace continues the momentum for Europe's Galileo program on its latest Soyuz flight

China to launch 30 Beidou navigation satellites in next 5 years

BIO FUEL
Student research settles 'superpower showdown'

The primate brain is 'pre-adapted' to face potentially any situation

New fossils shed light on the origin of 'hobbits'

Study: Grasslands served as setting for early human evolution

BIO FUEL
Sanctuary offers hope for endangered Philippine eagle

Cats use simple physics to zero in on hiding prey

Current diversity pattern of North American mammals a 'recent' trend, study finds

Study gives new meaning to the term 'bird brain'

BIO FUEL
New plant engineering technique could aid fight against malaria

Predicting Contagiousness to Limit the Spread of Disease

Predicting disease outbreaks using environmental changes

Southern Europe risks Zika outbreaks this summer

BIO FUEL
Disney works its magic on new Shanghai theme park

'Missing' bookseller returns to Hong Kong, seeks end to probe

China rights lawyer ready for consequences over new book: daughter

'Hooligan Sparrow': the film China doesn't want you to see

BIO FUEL
Indonesia frees vessel captured by suspected pirates: navy

Founder of online underworld bank gets 20 years in prison

Colombia authorizes air strikes against criminal gangs

New force raids El Salvador gang districts

BIO FUEL
China's total debt is more than double GDP: govt economist

China bank lending rebounds strongly in May

Billionaire Investors Back A Gold Price Rally In 2016

China economic outlook "uncertain" as vulnerabilities loom: IMF









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.