Subscribe free to our newsletters via your
. Medical and Hospital News .




CHIP TECH
New Technique for Probing Subsurface Electronic Structure
by Staff Writers
Berkeley CA (SPX) Jan 20, 2014


From left, Aaron Bostwick, Charles Fadley, Jim Ciston and Alex Gray at the Advanced Light Source's Beamline 7.0.1. Image courtesy Roy Kaltschmidt.

"The interface is the device," Nobel laureate Herbert Kroemer famously observed, referring to the remarkable properties to be found at the junctures where layers of different materials meet.

In today's burgeoning world of nanotechnology, the interfaces between layers of metal oxides are becoming increasingly prominent, with applications in such high-tech favorites as spintronics, high-temperature superconductors, ferroelectrics and multiferroics. Realizing the vast potential of these metal oxide interfaces, especially those buried in subsurface layers, will require detailed knowledge of their electronic structure.

A new technique from an international team of researchers working at Berkeley Lab's Advanced Light Source (ALS) promises to deliver the goods. In a study led by Charles Fadley, a physicist who holds joint appointments with Berkeley Lab's Materials Sciences Division and the University of California Davis, where he is a Distinguished Professor of Physics, the team combined two well-established techniques for studying electronic structure in crystalline materials into a new technique that is optimized for examining electronic properties at subsurface interfaces.

They call this new technique SWARPES, for Standing Wave Angle-Resolved Photoemission Spectroscopy.

"SWARPES allows us for the first time to selectively study buried interfaces with either soft or hard x-rays," Fadley says. "The technique can be applied to any multilayer prototype device structure in spintronics, strongly correlated/high-TC superconductors, or semiconductor electronics. The only limitations are that the sample has to have a high degree of crystalline order, and has to be grown on a nanoscale multilayer mirror suitable for generating an x-ray standing wave."

As the name indicates, SWARPES combines the use of standing waves of x-rays with ARPES, the technique of choice for studying electronic structure. A standing wave is a vibrational pattern created when two waves of identical wavelength interfere with one another: one is the incident x-ray and the other is the x-ray reflected by a mirror. Interactions between standing waves and core-level electrons reveal much about the properties of each atomic species in a sample.

ARPES from the outer valence levels is the long-standing spectroscopic workhorse for the study of electronic structure. X-rays striking a material surface or interface cause the photoemission of electrons at angles and kinetic energies that can be measured to obtain detailed electronic energy levels of the sample.

While an extremely powerful tool, ARPES, a soft x-ray technique, is primarily limited to the study of near-surface atoms. It's harder x-ray cousin, HARPES, makes use of more energetic x-rays to effectively probe subsurface interfaces, but the addition of the standing wave capability provides a much desired depth selectivity.

"The standing wave can be moved up and down in a sample simply by rocking the angle of incidence around the Bragg angle of the mirror," says Alexander Gray, a former member of Fadley's UC Davis research group and affiliate with Berkeley Lab's Materials Sciences Division, who is now a postdoctoral associate at Stanford/SLAC.

"Observing an interface between a ferromagnetic conductor (lanthanum strontium manganite) and an insulator (strontium titanate), which constitute a magnetic tunnel junction used in spintronic logic circuits, we've shown that changes in the electronic structure can be reliably measured, and that these changes are semi-quantitatively predicted by theory at several levels. Our results point to a much wider use of SWARPES in the future for studying the electronic properties of buried interfaces of many different kinds."

Fadley, Gray and their collaborators carried out their SWARPES tests at ALS Beamline 7.0.1. The Advanced Light Source is a U.S. Department of Energy (DOE) national user facility and Beamline 7.0.1 features a premier endstation for determining the electronic structure of metals, semiconductors and insulators. Additional corroborating measurements concerning the interface atomic structure were performed at the National Center for Electron Microscopy (NCEM), another DOE national user facility hosted at Berkeley Lab.

Results of this study have been published in Europhysics Letters (EPL). The paper is titled "Momentum-resolved electronic structure at a buried interface from soft X-ray standing-wave angle-resolved photoemission." Gray was the lead author, Fadley the corresponding author.

.


Related Links
Berkeley Lab's Advanced Light Source
NCEM
Research of Charles Fadley
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Fastest organic transistor heralds new generation of see-through electronics
Stanford CA (SPX) Jan 16, 2014
Two university research teams have worked together to produce the world's fastest thin-film organic transistors, proving that this experimental technology has the potential to achieve the performance needed for high-resolution television screens and similar electronic devices. For years engineers the world over have been trying to use inexpensive, carbon-rich molecules and plastics to crea ... read more


CHIP TECH
UK charity expands Philippine anti-trafficking work

Tornadoes, flood, drought cost US billions in 2013

Funding Problems Threaten US Disaster Preparedness

Microalgae and aquatic plants can help to decrease radiopollution in the Fukushima area

CHIP TECH
20th Anniversary of Initial Operational Capability of the GPS Constellation

NGC Wins Contract For GPS-Challenged Navigation and Geo-Registration Solution

Northrop Grumman and Trex Enterprises to Introduce Celestial Navigation to Soldier Precision Targeting Laser Systems

GPS Traffic Maps for Leatherback Turtles Show Hotspots to Prevent Accidental Fishing Deaths

CHIP TECH
Study: Chimps can use gestures to achieve specific goals cooperatively

Primates: Now with only half the calories!

Ultrasound directed to the human brain can boost sensory performance

Australia study debunks existence of 'sixth sense' or ESP

CHIP TECH
Rare Amur leopard killed in China: Xinhua

The way to a chimpanzee's heart is through its stomach

World's largest animal genome belongs to locust

How a scorpion gets its sting

CHIP TECH
Shanghai reports two deaths in China bird flu outbreak

AIDS infections down by a third in S.Africa: UNAIDS

China reports new H7N9 bird flu death

New H7N9 bird flu deaths reported in China: state media

CHIP TECH
China's Wen pleads innocence over hidden riches claim

China, Japan dumpling poisoner gets life: report

China starts relaxing one-child policy

China sets dissident trial date as EU envoy criticises rights record

CHIP TECH
French navy arrests pirates suspected of oil tanker attack

Mexican vigilantes accuse army of killing four

Gunmen kill two soldiers in troubled Mexican state

China smugglers dig tunnel into Hong Kong: media

CHIP TECH
China's 2013 growth matches its slowest rate since 1999

China 2013 growth flat at 7.7%: AFP survey

Foreign direct investment in China rebounds 5.3% in 2013

H.K. economy world's freest for 20th consecutive year




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement