Medical and Hospital News  
TECH SPACE
New algorithm predicts optimal materials among all possible compounds
by Staff Writers
Moscow, Russia (SPX) May 18, 2020

The results of a Mendelevian Search for hard and superhard materials

Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements. These combinations are virtually endless, and each has an infinite multitude of possible crystal structures; it is not feasible to test them all and choose the best option (for instance, the hardest compound) either in an experiment or in silico.

The computational method developed by Skoltech professor Artem R. Oganov and his PhD student Zahed Allahyari solves this major problem of theoretical materials science. Oganov and Allahyari presented their method in the MendS code (stands for Mendelevian Search) and tested it on superhard and magnetic materials.

"In 2006, we developed an algorithm that can predict the crystal structure of a given fixed combination of chemical elements. Then we increased its predictive powers by teaching it to work without a specific combination - so one calculation would give you all stable compounds of given elements and their respective crystal structures.

The new method tackles a much more ambitious task: here, we pick neither a precise compound nor even specific chemical elements - rather, we search through all possible combinations of all chemical elements, taking into account all possible crystal structures, and find those that have the needed properties (e.g., highest hardness or highest magnetization)" says Artem Oganov, Skoltech and MIPT professor, Fellow of the Royal Society of Chemistry and a member of Academia Europaea.

The researchers first figured out that it was possible to build an abstract chemical space so that compounds that would be close to each other in this space would have similar properties. Thus, all materials with peculiar properties (for example, superhard materials) will be clustered in certain areas, and evolutionary algorithms will be particularly effective for finding the best material.

The Mendelevian Search algorithm runs through a double evolutionary search: for each point in the chemical space, it looks for the best crystal structure, and at the same time these found compounds compete against each other, mate and mutate in a natural selection of the best one.

To test the efficacy of the new method, scientists gave their machine a task to find the composition and structure of the hardest material. Their algorithm returned diamond, which makes pursuits for materials harder than diamond a dead end. Moreover, the algorithm also predicted several dozen hard and superhard phases, including most of the already known materials and several completely new ones.

This method can speed up the search for record-breaking materials and usher in new technological breakthroughs. Equipped with these materials, scientists can create brand new technologies or increase the efficiency and availability of old ones.

Research paper


Related Links
Skolkovo Institute Of Science And Technology (SKOLTECH)
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Liquid metal research invokes 'Terminator' film - but much friendlier
Binghamton NY (SPX) May 06, 2020
Pu Zhang likes to compare his team's research on liquid metals to the Terminator - specifically 1991's Terminator 2: Judgment Day, in which a killer robot sent from a grim future can transform into anyone and anything in pursuit of its human prey. When told maybe that's not the best comparison, Zhang laughed and made a confession: "To be honest, I've never watched that movie!" Zhang - an assistant professor of mechanical engineering at Binghamton University, State University of New York - has much ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Facebook to pay $52 mn settlement for trauma to content reviewers

PNG police call for calm after senior officer killed

US judge orders reopening of Massachusetts gun stores

Hong Kong gyms, bars and cinemas reopen as virus measures ease

TECH SPACE
Velodyne Lidar announces multi-year sales agreement with GeoSLAM

Galileo positioning aiding Covid-19 reaction

GPS celebrates 25th year of operation

Galileo Green Lane, easing pressure at the EU's internal borders

TECH SPACE
Neanderthals preferred bovine bones for leather-making tools

Evidence of Late Pleistocene human colonization of isolated islands beyond Wallace's Line

Commuter data helps scientists define metropolitan boundaries

Study reveals rich genetic diversity of Vietnam

TECH SPACE
Rhino killed as poaching attempts increase amid India virus lockdown

Killing of rare river dolphins sparks poaching fears in Bangladesh lockdown

Disabled flies sleep more as they learn to adapt

Asian giant hornets spotted for first time in US

TECH SPACE
China virus city in transport shutdown as WHO delays decision

Europe boosts China flight checks as killer virus spreads

Global health emergencies: A rarely used call to action

Infections spike in heart of Buenos Aires, worrying authorities

TECH SPACE
Ex-shipbuilding boss in China faces corruption probe

230 arrested in Hong Kong's first major protests since virus began

Hong Kong leader vows education overhaul after protests

China greenlights reopening of entertainment venues nationwide

TECH SPACE
Trump orders Pentagon to boost drug interdiction efforts

In Colombia, fleet of cartel narco-subs poses challenge for navy

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.