Medical and Hospital News  
ENERGY TECH
New chemistries found for liquid batteries
by Staff Writers
Boston MA (SPX) Mar 28, 2016


An artist's rendering of a calcium liquid battery. Image courtesy Christine Daniloff and MIT. For a larger version of this image please go here.

Liquid metal batteries, invented by MIT professor Donald Sadoway and his students a decade ago, are a promising candidate for making renewable energy more practical. The batteries, which can store large amounts of energy and thus even out the ups and downs of power production and power use, are in the process of being commercialized by a Cambridge-based startup company, Ambri.

Now, Sadoway and his team have found yet another set of chemical constituents that could make the technology even more practical and affordable, and open up a whole family of potential variations that could make use of local resources.

The latest findings are reported in the journal Nature Communications, in a paper by Sadoway, who is the John F. Elliott Professor of Materials Chemistry, and postdoc Takanari Ouchi, along with Hojong Kim (now a professor at Penn State University) and PhD student Brian Spatocco at MIT. They show that calcium, an abundant and inexpensive element, can form the basis for both the negative electrode layer and the molten salt that forms the middle layer of the three-layer battery.

That was a highly unexpected finding, Sadoway says. Calcium has some properties that made it seem like an especially unlikely candidate to work in this kind of battery. For one thing, calcium easily dissolves in salt, and yet a crucial feature of the liquid battery is that each of its three constituents forms a separate layer, based on the materials' different densities, much as different liqueurs separate in some novelty cocktails. It's essential that these layers not mix at their boundaries and maintain their distinct identities.

It was the seeming impossibility of making calcium work in a liquid battery that attracted Ouchi to the problem, he says. "It was the most difficult chemistry" to make work but had potential benefits due to calcium's low cost as well as its inherent high voltage as a negative electrode. "For me, I'm happiest with whatever is most difficult," he says - which, Sadoway points out, is a very typical attitude at MIT.

Another problem with calcium is its high melting point, which would have forced the liquid battery to operate at almost 900 degrees Celsius, "which is ridiculous," Sadoway says. But both of these problems were solvable.

First, the researchers tackled the temperature problem by alloying the calcium with another inexpensive metal, magnesium, which has a much lower melting point. The resulting mix provides a lower operating temperature - about 300 degrees less than that of pure calcium - while still keeping the high-voltage advantage of the calcium.

The other key innovation was in the formulation of the salt used in the battery's middle layer, called the electrolyte, that charge carriers, or ions, must cross as the battery is used. The migration of those ions is accompanied by an electric current flowing through wires that are connected to the upper and lower molten metal layers, the battery's electrodes.

The new salt formulation consists of a mix of lithium chloride and calcium chloride, and it turns out that the calcium-magnesium alloy does not dissolve well in this kind of salt, solving the other challenge to the use of calcium.

But solving that problem also led to a big surprise: Normally there is a single "itinerant ion" that passes through the electrolyte in a rechargeable battery, for example, lithium in lithium-ion batteries or sodium in sodium-sulfur.

But in this case, the researchers found that multiple ions in the molten-salt electrolyte contribute to the flow, boosting the battery's overall energy output. That was a totally serendipitous finding that could open up new avenues in battery design, Sadoway says.

And there's another potential big bonus in this new battery chemistry, Sadoway says.

"There's an irony here. If you're trying to find high-purity ore bodies, magnesium and calcium are often found together," he says.

It takes great effort and energy to purify one or the other, removing the calcium "contaminant" from the magnesium or vice versa. But since the material that will be needed for the electrode in these batteries is a mixture of the two, it may be possible to save on the initial materials costs by using "lower" grades of the two metals that already contain some of the other.

"There's a whole level of supply-chain optimization that people haven't thought about," he says.

Sadoway and Ouchi stress that these particular chemical combinations are just the tip of the iceberg, which could represent a starting point for new approaches to devising battery formulations.

And since all these liquid batteries, including the original liquid battery materials from his lab and those under development at Ambri, would use similar containers, insulating systems, and electronic control systems, the actual internal chemistry of the batteries could continue to evolve over time. They could also adapt to fit local conditions and materials availability while still using mostly the same components.

"The lesson here is to explore different chemistries and be ready for changing market conditions," Sadoway says. What they have developed "is not a battery; it's a whole battery field. As time passes, people can explore more parts of the periodic table" to find ever-better formulations, he says.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
MIT develops nontoxic way of generating portable power
Boston MA (SPX) Mar 21, 2016
The batteries that power the ubiquitous devices of modern life, from smartphones and computers to electric cars, are mostly made of toxic materials such as lithium that can be difficult to dispose of and have limited global supplies. Now, researchers at MIT have come up with an alternative system for generating electricity, which harnesses heat and uses no metals or toxic materials. The ne ... read more


ENERGY TECH
TEPCO bungles Fukushima cleanup as robots damaged by Radiation

No hope of survivors in northern Pakistan avalanche: officials

Two schoolchildren killed, nine missing in Pakistan avalanche

Hope fades to fear for Chinese refugees in junta-run Thailand

ENERGY TECH
ISRO Developing 'Front-End Chip' for Satellite Navigation System

India to Launch Sixth Navigational Satellite on Thursday

Lockheed Martin building next generation of military GPS satellites

Traffic app says not at fault for Israel troops losing way

ENERGY TECH
Why did humans make more pottery after the last ice age?

Ancient Denisovan DNA excavated in modern Pacific Islanders

Researchers find ancient DNA preserved in modern-day humans

400,000-year-old fossils from Spain provide earliest genetic evidence of Neandertals

ENERGY TECH
China widens ban on ivory imports

Many species now going extinct may vanish without a fossil trace

Small birds' vision: Not so sharp but superfast

Spelling mutations and evolutionary advantages

ENERGY TECH
Potential Zika virus risk estimated for 50 US cities

Change in mosquito mating may control Zika virus

Testing the evolution of resistance by experiment

Google teams with UNICEF to map Zika virus spread

ENERGY TECH
Waisting time: paper-thin campaign raises questions in China

Self-destruction and harsh realities at Art Basel Hong Kong

Missing Chinese journalist has been detained: lawyer

Rights groups slam China over missing journalist

ENERGY TECH
10 gang suspects killed in northern Mexico

Two Mexican marines, suspect killed in shootout

ENERGY TECH
Chinese living artists' auction sales slump: survey

Trudeau takes Canada back into the red to boost growth

Money to burn? China firms seek new investors

China mine workers detained after wages protest: locals









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.