Medical and Hospital News  
SPACE MEDICINE
New class of drugs holds promise for combating antibiotic resistance
by Staff Writers
Norman OK (SPX) Nov 21, 2016


Once antibiotics have entered the cell by crossing the outer membrane (inset, top), they enter the efflux pump protein shown in yellow near the inner membrane (bottom) only to be pumped back out of the cell (upward). The Titan supercomputer identifies molecules that target the "red" proteins and potentially disable the efflux pump by preventing it from assembling properly. Image courtesy Oak Ridge National Laboratory. For a larger version of this image please go here.

A new class of drugs that combat antibiotic resistance has been discovered by a University of Oklahoma researcher and team. In the study supported by the National Institutes of Health, laboratory experiments were combined with supercomputing modeling to identify molecules that boost the effect of antibiotics on disease-causing bacteria.

Helen Zgurskaya, professor of chemistry and biochemistry in the OU College of Arts and Sciences, and OU team members Narges Abdali, Julie Chaney, David Wolloscheck and Valentin Rybenkov, collaborated with Jeremy Smith, Jerry Parks and Jerome Baudry, the University of Tennessee-Oak Ridge National Laboratory Center for Molecular Biophysics; Adam Green, UT; and Keith Haynes and John Walker, Saint Louis University School of Medicine. They collectively identified four new chemicals that seek out and disrupt bacterial proteins called "efflux pumps", a major cause of antibiotic resistance in bacteria.

"The supercomputing power of ORNL's Titan supercomputer allowed us to perform large-scale simulations of the drug targets and to screen many potential compounds quickly," said Zgurskaya, head of the OU Antibiotic Discovery and Resistance Group at the Stephenson Life Sciences Research Center.

"The information we received was combined with our experiments to select molecules that were found to work well, and this should drastically reduce the time needed to move from the experimental phase to clinical trials," she added.

The team focused on one efflux pump protein, known as AcrA, which connects two other proteins in a tunnel shape through the bacterial cell envelope. Disrupting this protein could essentially break the efflux pump-- an approach unlike other drug design strategies that try to inhibit the biochemical processes.

"In contrast to previous approaches, our new mechanism uses mechanics to revive an existing antibiotic's ability to fight infection," said Smith, UT-ORNL Governor's Chair and director of the UT-ORNL Center for Molecular Biophysics.

The laboratory experiments were done jointly with extensive protein simulations run on ORNL's Titan supercomputer. Large numbers of chemicals were scanned to predict and select which would be the most effective in preventing AcrA proteins from assembling properly.

Using computational models produced by the Titan supercomputer, researchers screened various combinations of molecules and proteins to determine which ones were most disruptive to their formation.

"The first screening took only 20 minutes using 42,000 processors and yielded several promising results," said Parks, ORNL. "After more extensive analysis, we narrowed down our list to predict which molecules were most likely to disrupt the function of the efflux pump."

OU researchers then conducted laboratory experiments to confirm the disruption of the efflux pump and the antibiotic-reviving capability of four of the molecules selected. The SLU School of Medicine research team synthesized structural analogs of the discovered efflux pump inhibitors and identified properties essential for their activities.

The study, "Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-ToIC Multidrug Efflux Pump," was published in the American Chemical Society's Infectious Diseases journal. Support for the project was provided by NIH grant number RO1AI052293 in the amount of $2 million.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Oklahoma
Space Medicine Technology and Systems






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE MEDICINE
Researchers discover new antibiotics by sifting through the human microbiome
New York NY (SPX) Nov 17, 2016
Most antibiotics in use today are based on natural molecules produced by bacteria - and given the rise of antibiotic resistance, there's an urgent need to find more of them. Yet coaxing bacteria to produce new antibiotics is a tricky proposition. Most bacteria won't grow in the lab. And even when they do, most of the genes that cause them to churn out molecules with antibiotic properties never g ... read more


SPACE MEDICINE
How to stop human-made droughts and floods before they start

After bloody year, Chicago looks to tougher gun laws

Tech would use drones and insect biobots to map disaster areas

New Zealand navy ships 'shellshocked' quake tourists to safety

SPACE MEDICINE
How NASA and John Deere Helped Tractors Drive Themselves

Flying the fantastic four

Russian Space Agency May Launch Up to 4 Glonass Navigation Satellites Next Year

Australian continent shifts with the seasons

SPACE MEDICINE
Genes for speech may not be limited to humans

Traumatic stress shapes the brains of boys and girls in different ways

Neanderthal inheritance helped humans adapt to life outside of Africa

Evolution purged many Neanderthal genes from human genome

SPACE MEDICINE
New model reveals adaptations of world's most abundant ocean microbe

More than a shield: New snail species uses shell as a weapon

Two tigers killed or trafficked every week: report

As video shows, mob mentality a boon to hungry hyenas

SPACE MEDICINE
Rift Valley Fever epidemic kills at least 32 in Niger

Netherlands steps up measures to fight bird flu

Ebola adapted to better infect humans during 2013-2016 epidemic

Not 'patient zero': the origins of US AIDS epidemic

SPACE MEDICINE
Eight dead in fighting in Myanmar town on China border

Dalai Lama visits Mongolia over China's objections

China's most-wanted corruption fugitive returns from US

Voting in an election 'with Chinese characteristics'

SPACE MEDICINE
African leaders tackle piracy, illegal fishing at Lome summit

US to deport ex-navy chief drug trafficker to Guinea-Bissau

Gunmen ambush Mexican military convoy, kill 5 soldiers

Mexican army to probe killings of six in their home

SPACE MEDICINE
Property and credit booms stablise China growth

China data and US banks propel equities higher

No debt-for-equity cure for zombie firms, says China

China's ranks of super-rich rise despite economic slowdown









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.