Medical and Hospital News  
TECH SPACE
New imager microchip helps devices bring hidden objects to light
by Kim Horner for UTDallas News
Dallas TX (SPX) Feb 24, 2022

The terahertz imager features a microchip (see inset) and a reflector that increases the imaging distance and quality and reduces power consumption. The microchip emits radiation beams in the terahertz range (430 GHz) of the electromagnetic spectrum from pixels no larger than a grain of sand. The beams travel through obstacles that optical light cannot penetrate and bounce off objects and back to the microchip, where the pixels pick up the signal to create images.

Researchers from The University of Texas at Dallas and Oklahoma State University have developed an innovative terahertz imager microchip that can enable devices to detect and create images through obstacles that include fog, smoke, dust and snow.

The team is working on a device for industrial applications that require imaging up to 20 meters away. The technology could also be adapted for use in cars to help drivers or autonomous vehicle systems navigate through hazardous conditions that reduce visibility. On an automotive display, for example, the technology could show pixelated outlines and shapes of objects, such as another vehicle or pedestrians.

"The technology allows you to see in vision-impaired environments. In industrial settings, for example, devices using the microchips could help with packaging inspections for manufacturing process control, monitoring moisture content or seeing through steam. If you are a firefighter, it could help you see through smoke and fire," said Dr. Kenneth K. O, professor of electrical and computer engineering and the Texas Instruments Distinguished University Chair in the Erik Jonsson School of Engineering and Computer Science.

Yukun Zhu, a doctoral candidate in electrical engineering, announced the imaging technology on Feb. 21 at the virtual International Solid-State Circuits Conference, sponsored by the Institute of Electrical and Electronics Engineers (IEEE) and its Solid-State Circuits Society.

The advance is the result of more than 15 years of work by O and his team of students, researchers and collaborators. This latest effort is supported by through its TI Foundational Technology Research Program.

"TI has been part of the journey through much of the 15 years," said O, who is director of the Texas Analog Center of Excellence (TxACE) at UT Dallas. "The company has been a key supporter of the research."

The microchip emits radiation beams in the terahertz range (430 GHz) of the electromagnetic spectrum from pixels no larger than a grain of sand. The beams travel through fog, dust and other obstacles that optical light cannot penetrate and bounce off objects and back to the microchip, where the pixels pick up the signal to create images. Without the use of external lenses, the terahertz imager includes the microchip and a reflector that increases the imaging distance and quality and reduces power consumption.

The researchers designed the imager using complementary metal-oxide semiconductor (CMOS) technology. This type of integrated circuit technology is used to manufacture the bulk of consumer electronics devices, which makes the imager affordable. O's group was one of the first to show that CMOS technology was viable, and since then they have worked to develop a variety of new applications.

"Another breakthrough result enabled through innovations that overcame fundamental active-gain limits of CMOS is that this imaging technology consumes more than 100 times less power than the phased arrays currently being investigated for the same imaging applications. This and the use of CMOS make consumer applications of this technology possible," said O, a fellow of the IEEE.

TxACE is supported by the Semiconductor Research Corp., TI, the UT System and UT Dallas.

"UT Dallas and Oklahoma State continue to discover technological innovations that will help shape the future," said Dr. Swaminathan Sankaran, design director and Distinguished Member Technical Staff at TI Kilby Labs. "What Dr. O and his research team were able to accomplish was truly remarkable with this terahertz monostatic reflection-mode imager work. Their research paves a path for improved raw angular resolution and low-power, cost system integration, and we are excited to see what applications and use cases this terahertz imaging technology will lead to."

Research Report: A 430GHz CMOS Concurrent Transceiver Pixel Array for High Angular Resolution Reflection-Mode Active Imaging


Related Links
Texas Analog Center of Excellence
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Northrop Grumman awarded US Space Force contract for deep-space advanced radar
Colorado Springs CO (SPX) Feb 24, 2022
Northrop Grumman Corporation has been awarded a $341 million contract by the U.S. Space Force (USSF) Space Systems Command (SSC) to develop, test and deliver a Deep-Space Advanced Radar Capability (DARC) in support of its Space Domain Awareness mission. "The DARC program will field a resilient ground-based radar providing our nation with significantly enhanced space domain awareness for geostationary orbit," said Pablo Pezzimenti, vice president, integrated national systems, Northrop Grumman. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
China envoy to Ukraine postpones evacuation of citizens

Romania becomes refuge for Ukrainians on NATO's frontline

Ukraine warns of radiation after Chernobyl seized by Russians

G7 meeting to focus on Ukraine aid: World Bank

TECH SPACE
Northrop Grumman equips US Marines with Next Generation Handheld Targeting Device

The drone has landed

China completes health check on BDS satellite constellation

Providing GPS-quality timing accuracy without GPS

TECH SPACE
University of Oxford researchers create largest ever human family tree

Shelter for traumatised apes in DR Congo's strife-torn east

Orangutans instinctively use hammers to strike and sharp stones to cut

Watch a chimpanzee mother apply an insect to a wound on her son

TECH SPACE
On the front line in Liberia's fight to save the pangolin

S.Africa announces hunt permits for rhino, leopards

Study: Dogs may show grief when fellow canine dies

No bull: New Zealand bovine rides raging floodwaters

TECH SPACE
Virus-hit Hong Kong considers lockdown as bodies pile up

China could eventually 'co-exist' with Covid: top scientist

Lockdown fears spark panic buying in Hong Kong

Hong Kong and Singapore virus response a tale of two very different cities

TECH SPACE
Chinese anti-graft body criticises banks for 'extravagance'

Prominent anti-China activist arrested in Mongolia

Nepal police fire tear gas as MPs debate US grant

Chinese food delivery giant slumps on new fee-cut measures

TECH SPACE
Iran, Russia, China start war games to counter 'maritime piracy'

Denmark shelves prosecution of Africa piracy suspects

Friction frays Gulf of Guinea anti-piracy efforts

Denmark extends navy detention of four pirates off Africa

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.