Medical and Hospital News  
TECH SPACE
New laser achieves wavelength long sought by laser developers
by Staff Writers
Bath, UK (SPX) Mar 08, 2016


Fei Yu was instrumental in developing a new hollow-core optical fiber similar to the one pictured in the background. The fiber's long and thin bubbles of glass reflect light into the fiber's core much in the same way that light reflects off the surface of the soap bubble in the foreground, making it appear iridescent. Image courtesy University of Bath. For a larger version of this image please go here.

Researchers at the University of Bath, United Kingdom have created a new kind of laser capable of pulsed and continuous mid-infrared (IR) emission between 3.1 and 3.2 microns, a spectral range that has long presented a major challenge for laser developers.

The achievement could aid in the development of new uses for mid-IR lasers, which are currently used in applications such as spectroscopy, environmental sensing and detecting explosives.

The new laser, detailed in The Optical Society's high impact journal Optica, combines aspects of both gas and fiber lasers. Fiber lasers are useful because they tend to be stable and easy to use, produce high quality beams, can emit at high powers, and are easy to cool.

Placing a suitable gas inside of a hollow optical fiber allowed the researchers to create a fiber gas laser with mid-IR emission. Lasers are central to thousands of consumer, industrial and scientific products; the uses for each type of laser depend on factors such as power, beam quality and wavelength.

"Beyond about 2.8 microns, conventional fiber lasers start to fall off in terms of power, and the other main technology for the mid IR, quantum cascade lasers, doesn't pick up until beyond 3.5 microns," said William Wadsworth, who co-led the research team with Jonathan Knight, also at the University of Bath. "This has left a gap that has presented a great deal of difficulty."

New hollow-core fibers
Key to the laser's success was the team's development of silica hollow-core fibers that perform exceptionally well in the mid-IR. Hollow-core fibers are a new class of fibers that use internal glass structures to confine light inside hollow cores, whereas traditional optical fibers confine light in a solid core of glass.

"You can think of the structures in our fibers as very long and thin bubbles of glass," explained Wadsworth. "By surrounding the region of space in the middle of the fiber with the bubbles, light that is reflected by the bubbles will be trapped inside of the hollow core."

Because light traveling inside a hollow-core fiber remains mostly in the empty core, these fibers overcome the tendency of silica-based glass to absorb light at wavelengths past 2.8 microns. Silica is the preferred material for optical fibers because it inexpensive, easy to manufacture and extremely strong.

Creating a laser
The researchers recognized that their new hollow core fibers could enable a new type of fiber laser. Lasers require an electrical current or another laser to excite a material's electrons, which then emit photons as they return to their normal state.

The researchers used acetylene gas because it emits in the mid-IR and can be excited, or pumped, using lasers designed for the telecommunications industry. The hollow-core fibers provided a way to trap the light and the gas in the same place so that they can interact for a very long distance - 10 or 11 meters in this case.

The University of Bath researchers as well as other research groups have previously shown that gas inside a fiber can interact with light to produce mid-IR emission. In the new work, the researchers added a feedback fiber, the last component needed to consider the device a true laser. The feedback fiber takes a small amount of light produced in the fiber containing the acetylene gas and uses that light to seed another cycle of light amplification, thus reducing the pump power required to produce a laser beam.

One important advantage of the new design is its use of mature telecommunications diode lasers, which are practical, inexpensive, and available in high powers. The researchers plan to use a higher power pump laser to increase the fiber gas laser's power.

Future expansion
"We developed a way to use light to pump molecules and generate light that is not that common to see in a laser system," said Fei Yu, a member of the research team. "This new way to construct a gas laser could be expanded to make more and more laser types that would have been impossible without our hollow-core fiber."

The researchers say that a number of other gases should work with their fiber gas laser, allowing emission up to 5 microns. "This laser is just one use of our hollow-core fiber," said Muhammad Rosdi Abu Hassan, a doctoral student and first author of the paper.

"We see it stimulating other applications of the hollow fiber and new ways of interacting different types of laser beams with gases at various wavelengths, including wavelengths that you wouldn't expect to work."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Bath
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Silicon chip with integrated laser: Light from a nanowire
Munich, Germany (SPX) Feb 12, 2016
Physicists at the Technical University of Munich (TUM) have developed a nanolaser, a thousand times thinner than a human hair. Thanks to an ingenious process, the nanowire lasers grow right on a silicon chip, making it possible to produce high-performance photonic components cost-effectively. This will pave the way for fast and efficient data processing with light in the future. Ever small ... read more


TECH SPACE
Among the believers: hope endures for MH370 relatives

Web users lament China's 'forest of steel' after lift death

Mutations, DNA damage seen in Fukushima forests: Greenpeace

Fukushima 'dark tourism' aids remembrance and healing

TECH SPACE
India to Launch Sixth Navigational Satellite on Thursday

Lockheed Martin building next generation of military GPS satellites

Traffic app says not at fault for Israel troops losing way

ESA helping to keep transport systems on track

TECH SPACE
ONR Global sponsors research to improve memory through electricity

Easter Island not destroyed by war, analysis of 'spear points' shows

Neanderthals and modern H. sapiens crossbred over 100,000 years ago

Neanderthals mated with modern humans much earlier than previously thought

TECH SPACE
Some birds are just as smart as apes

Syntax is not unique to human language

Biophysicists discover how hydra opens its mouth

Leaf mysteries revealed through the computer's eye

TECH SPACE
Testing the evolution of resistance by experiment

Google teams with UNICEF to map Zika virus spread

Single antibody from human survivor protects nonhuman primates against Ebola virus

Brazil military fight mosquitoes, flower pot to flower pot

TECH SPACE
China Communist party punished nearly 300,000 for graft in 2015

Detained Chinese lawyer arrives in US: NGO

China's population to grow 45 million by 2020: plan

Another 'missing' bookseller back in Hong Kong: police

TECH SPACE
Two Mexican marines, suspect killed in shootout

TECH SPACE
Study: More female traders could stabilize the market

China 'absolutely' will not have hard landing: official

China cuts 2016 growth target to '6.5-7 percent': Li

Slowing growth looms over China parliament meeting









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.