Medical and Hospital News
STELLAR CHEMISTRY
New method employs atomic clocks and lasers to probe dark matter
illustration only
New method employs atomic clocks and lasers to probe dark matter
by Emma Blackwood for UQ News
Brisbane, Australia (SPX) Feb 12, 2025

A team of international researchers has introduced an innovative approach to detecting dark matter, leveraging atomic clocks and ultra-stable lasers to investigate the enigmatic substance believed to hold galaxies together.

University of Queensland PhD student Ashlee Caddell co-led the study in collaboration with Germany's Physikalisch-Technische Bundesanstalt (PTB), using high-precision atomic clocks and cavity-stabilized lasers to search for dark matter in an unprecedented way.

"Despite extensive theories and experimental efforts, dark matter remains elusive, even though we consider it the 'glue' that binds the galaxy," said Ms. Caddell.

"Our research took a different route by analyzing data from a network of ultra-stable lasers linked through fiber optic cables, as well as two atomic clocks aboard GPS satellites."

The study focused on detecting dark matter as a wave-like entity, given its extraordinarily low mass.

"By using widely separated clocks, we aimed to detect variations in this wave, which would manifest as slight differences in timekeeping or tick rates between the clocks," Ms. Caddell explained. "The greater the distance between the clocks, the stronger this effect would appear."

This novel technique allowed researchers to probe dark matter candidates that have remained undetectable in previous searches due to their lack of light or energy emissions.

"By comparing precision measurements over vast distances, we were able to uncover subtle oscillatory effects of dark matter that conventional methods would typically cancel out," Ms. Caddell noted.

"Excitingly, we managed to investigate dark matter models that interact universally with all atoms-something previous experiments have struggled to achieve."

University of Queensland physicist and co-author Dr. Benjamin Roberts emphasized that the findings could advance the search for one of the universe's most mysterious components.

"This research broadens the scope of possible dark matter scenarios that can now be explored, potentially leading to fundamental discoveries about the universe's underlying structure," Dr. Roberts stated.

"The study also underscores the value of international cooperation and cutting-edge technology, combining PTB's state-of-the-art atomic clocks with UQ's expertise in precision measurements and fundamental physics."

Research Report:Ultralight Dark Matter Search with Space-Time Separated Atomic Clocks and Cavities

Related Links
University of Queensland
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Space experiment aims to reveal hidden cosmic mass
London UK (SPX) Feb 04 2025
A space-based effort could soon uncover the nature of dark matter, one of the universe's most perplexing forces. Although invisible, this substance composes nearly 85 percent of cosmic mass, challenging scientists for decades. Now, a group at the University of Southampton has outlined a strategy to track dark matter by measuring faint disturbances in zero gravity. Researchers plan to fire lasers through graphite sheets suspended in weightless conditions. Physicist Tim Fuchs, who leads the pr ... read more

STELLAR CHEMISTRY
UN nuclear chief to view soil removed from Fukushima

One dead, dozens missing in China landslide

UK's Lammy warns US aid cuts could see China step into 'gap'

Israel defence minister orders army to plan for 'voluntary' departures from Gaza

STELLAR CHEMISTRY
Galileo ground stations undergo systemwide migration

EUSPA unveils integrated GNSS and secure SATCOM user technology update

GMV to advance the Galileo High Accuracy Service with new data generator

Sierra Space resilient GPS Satellite Program achieves major development milestone

STELLAR CHEMISTRY
New play takes on OpenAI drama and AI's existential questions

Trump signs order to get 'transgender ideology' out of military

How to Design Humane Autonomous Systems

Three million years ago our ancestors relied on plant-based diets

STELLAR CHEMISTRY
The squad saving deer from tourist trash in Japan's Nara

Rare otter 'disappeared' in Kyrgyzstan, experts warn

Australian team claims first IVF kangaroo embryo

Quantum factors elevate plant energy transport efficiency

STELLAR CHEMISTRY
A new vaccine approach could help combat future coronavirus pandemics

China says 'extremely unlikely' Covid pandemic came from lab leak

Wuhan keen to shake off pandemic label five years on

China marks muted 5th anniversary of first Covid death

STELLAR CHEMISTRY
Ai Weiwei denied entry to Switzerland; HK police defend probing families for wanted democracy activists

Australia expresses 'serious concerns' for writer jailed in China

Viral Chinese tourist spot stokes nostalgia with staged rural scenes

US charges former Fed official with spying for China

STELLAR CHEMISTRY
French government appeals to consumers to help stem drug 'tsunami'

Fears of scam centre kidnaps keep Chinese tourists on edge in Thailand

Clashes between police, gang leave 11 dead in Brazil

Charred bodies in Ecuador are missing adolescents, say officials

STELLAR CHEMISTRY
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.