Medical and Hospital News  
NANO TECH
New nanomanufacturing technique advances imaging, biosensing technology
by Staff Writers
Chicago IL (SPX) Dec 11, 2015


File image.

More than a decade ago, theorists predicted the possibility of a nanolens--a chain of three nanoscale spheres that would focus incoming light into a spot much smaller than possible with conventional microscopy. Such a device would make possible extremely high-resolution imaging or biological sensing. But scientists had been unable to build and arrange many nanolenses over a large area.

"That's where we came in," said Xiaoying Liu, senior research scientist at the University of Chicago's Institute for Molecular Engineering. Liu and Paul Nealey, the Dougan Professor in Molecular Engineering, teamed with experts in nanophotonics at the Air Force Research Laboratory and Florida State University to invent a novel way to build nanolenses in large arrays using a combination of chemical and lithographic techniques.

They aligned three spherical gold nanoparticles of graduated sizes in the string-of-pearls arrangement predicted to produce the focusing effect. The key, said Liu, was control: "We placed each individual nanoparticle building block into exactly the position we wanted it to go. That's the essence of our fabrication technique."

The team described its technique in the latest edition of Advanced Materials. The first step employs the lithographic methods used in making printed circuits to create a chemical mask. Liu and Nealey's mask leaves exposed a pattern of three spots of decreasing size on a substrate such as silicon or glass that won't absorb the gold nanoparticles.

Delicate patterns
Lithography allows for extremely precise and delicate patterns, but it can't produce three-dimensional structures. So the scientists used chemistry to build atop the patterned substrate in three dimensions. They treated the spots with polymer chains that were then tethered to the substrate through chemical bonds.

"The chemical contrast between the three spots and the background makes the gold particles go only to the spots," said Liu. To get each of the three sizes of nanospheres to adhere only to its own designated spot, the scientists played with the strength of the chemical interaction between spot and sphere. "We control the size of the different areas in the chemical pattern and we control the interaction potential of the chemistry of those areas with the nanoparticles," said Nealey.

Only the largest spot has the amount of force needed to attract and hold the largest particle; the interaction of the particle with the middle and the small spots is too weak.

When the big spheres are adsorbed, the scientists use the same trick to put the medium-sized spheres onto the medium-sized spots, and finally move on to the smallest.

"It's like the Three Bears story," said Nealey. "We can put big ones on the big spots, but they won't stick to the smaller spots; then put the next-sized one on the medium spot, but it won't stick to the small spot. By this sequential manufacturing we're able to arrive at these precise assemblies of three different-sized particles in close proximity to one another."

Tiny separations
The spheres are separated by only a few nanometers. It is this tiny separation, coupled with the sequential ordering of the different-sized spheres, that produces the nanolensing effect.

"You get this concentration in the intensity of the light between the small- and the medium-sized nanoparticles," said Nealey.

The scientists are already exploring using this "hot spot" for high-resolution sensing using spectroscopy. "If you put a molecule there, it will interact with the focused light," said Liu. "The enhanced field at these hot spots will help you to get orders of magnitude stronger signals. And that gives us the opportunity to get ultra-sensitive sensing. Maybe ultimately we can detect single molecules."

The researchers also foresee applying their manufacturing technique to nanoparticles of other shapes, such as rods and stars. "The physics of particles shaped differently than spheres enables even a wider spectrum of applications," said Nealey.

"There's a large range of properties that you could realize by putting particles with asymmetric shapes next to each other." The method will have broad application for any process that requires precision placement of materials in proximity to the same or different types of materials. It will, Nealey predicts, "be part of the way that nanomanufacturing is done."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Chicago
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Nanotube letters spell progress
Houston TX (SPX) Dec 12, 2015
Never mind the ABCs. Rice University scientists interested in nanotubes are studying their XYOs. Carbon nanotubes grown in a furnace aren't always straight. Sometimes they curve and kink, and sometimes they branch off in several directions. The Rice researchers realized they now had the tools available to examine just how tough those branches are. They used experiments and simulations to s ... read more


NANO TECH
Nepal quake victims face deadly winter as parties bicker

Red Cross meet fails to agree on global plan to track rules of war

Nobel Peace Prize awarded to Tunisia's guardians of democracy

Honduras to deploy security on gang-targeted buses

NANO TECH
US Air Force General Blasts Raytheon's 'Disaster' GPS Control System

Russian Defense Ministry Conducts Final GLONASS Tests- Developer

India's GPS system will have better accuracy says ISRO

Pentagon to re-examine Air Force GPS OCX program

NANO TECH
Research differentiates facial growth in Neanderthals and modern humans

East Asia Pacific ageing faster than anywhere else in history: World Bank

Engraved schist slab may depict paleolithic campsites

The accidental discovery of how to stay young for longer

NANO TECH
A new genus of plant bug, plus 4 new species from Australia

Scientists discover 74 new beetle species on Hawaiian volcano

Plants cope with climate change at genetic level

Extinct 3-horned palaeomerycid ruminant found in Spain

NANO TECH
Gene in 'last resort' antibiotics resistance found in Denmark

Russian TV host reveals HIV-positive status live on air

Indonesia's Papua battles AIDS epidemic

Fighting AIDS a top priority in western Kenya

NANO TECH
China medical student executed for poisoning

China denounces UN rights report as biased, 'incorrect'

Campaigners alarmed by opening of first KFC store in Tibet

Billionaire head of China's Fosun group 'vanishes'

NANO TECH
U.S., U.K. help build West African partners' anti-piracy capabilities

Villagers recall fear as troops fired in 'Chapo' raid

Chinese 'thief' swallowed diamond, tried to flee Thailand

NANO TECH
Major China bank PSBC raises more than $7 bn: Xinhua

China's yuan success hinges on reform despite IMF move

China manufacturing index falls to more than 3-year low

India's economy grows 7.4 percent, outperforms China: govt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.