Medical and Hospital News
CHIP TECH
New polymers could enable better wearable devices
MIT researchers developed a chemistry-based strategy to create organic iono-electronic polymers that "learn" and could improve electronic devices that interface directly with the human body. This illustration shows the proposed morphology of the polymer.
New polymers could enable better wearable devices
by Becky Ham for MIT News
Boston MA (SPX) Feb 07, 2023

Certain electronics that integrate with the human body - a smartwatch that samples your sweat, for instance - work by converting the ion-based signals of biological tissue into the electron-based signals used in transistors. But the materials in these devices are often designed to maximize ion uptake while sacrificing electronic performance.

To remedy this, MIT researchers developed a strategy to design these materials, called organic mixed ionic-electronic conductors (OMIECs), that brings their ionic and electronic capabilities into balance.

These optimized OMIECs can even learn and retain these signals in a way that mimics biological neurons, according to Aristide Gumyusenge, the Merton C. Flemings Assistant Professor of Materials Science and Engineering.

"This behavior is key to next-generation biology-inspired electronics and body-machine interfaces, where our artificial components must speak the same language as the natural ones for a seamless integration," he says.

Gumyusenge and his colleagues published their results Friday in the "Rising Stars" series of the journal Small. His co-authors include Sanket Samal, an MIT postdoc; Heejung Roh and Camille E. Cunin, both MIT PhD students; and Geon Gug Yang, a visiting PhD student from the Korea Advanced Institute of Science and Technology.

Building a better OMIEC
Electronics that interface directly with the human body need to be made from lightweight, flexible, and biologically compatible electronics. Organic polymer materials like OMIECs, which can transport both ions and electrons, make excellent building blocks for the transistors in these devices.

"However, ionic and electronic conductivities have opposite trends," Gumyusenge explains. "That is, improving ion uptake usually implies sacrificing electronic mobility."

Gumyusenge and his colleagues wondered if they could build a better OMIEC by designing new copolymers from the ground up, using a highly conductive pigment called DPP and engineering the copolymer's chemical backbone and sidechains. By selectively controlling the density of specific sidechains, the researchers were able to maximize both ion permeability and electron charge transport.

The technique could be used "to establish a broad library of OMIECs ... thus unlocking the current single-material-fits-all bottleneck" that now exists in ionic-electronic devices, Gumyusenge says.

The newly designed OMIECs also retain their electrochemical properties after undergoing a baking step at 300 degrees Celsius (572 degrees Fahrenheit), making them compatible with commercial manufacturing conditions used to make traditional integrated circuits.

Given that the OMIEC design process involved adding softer and more "ion-friendly" building blocks, the polymers' thermal properties and the impact of heat treatment "was impressive and a pleasant surprise," Gumyusenge says.

OMIECs in artificial neurons
The MIT researchers' design strategy makes it possible to tune the ability of an OMIEC to receive and hold on to an ion-based electrochemical charge. The process resembles what happens with biological neurons, which use ions to communicate during learning and memory.

This made Gumyusenge's team wonder: Could their OMIECs be used in devices that mimic the synaptic connections between neurons in the brain?

The MIT study showed that the artificial synapses could conduct signals in a way that resembles the synaptic plasticity underlying learning, as well as a persistent strengthening of the synapse's signal transmission that resembles the biological process of memory formation.

Someday these types of artificial synapses might form the basis of artificial neural networks that could make the integration of electronics and biology even more powerful, the researchers say.

For instance, Gumyusenge says, "materials such as the polymer we report are promising candidates toward the development of closed-loop feedback systems," which could do things like monitor a person's insulin levels and automatically deliver the correct dose of insulin based on these data.

The study was supported, in part, by the K. Lisa Yang Brain-Body Center at MIT and the Korea Advanced Institute of Science and Technology.

Research Report:"Molecularly Hybridized Conduction in DPP-Based Donor-Acceptor Copolymers toward High-Performance Iono-Electronics"

Related Links
Laboratory of Organic Materials for Smart Electronics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Two quasi-2D perovskite-based heterostructures: Properties and applications
Wuhan, China (SPX) Feb 03, 2023
Van der Waals heterostructures integrated from various two-dimensional (2D) layered materials provide fundamental building blocks for optoelectronic devices with novel functionalities, such as photovoltaic solar cells, light emitting diodes (LEDs) and photodetectors. Especially, two-dimensional and quasi-two-dimensional perovskites (abbreviated both of them as 2D perovskites hereafter) exhibit unique properties, such as large exciton binding energy, high photoluminescence quantum efficiency, large oscil ... read more

CHIP TECH
'Waiting for our dead': Anger builds at Turkey's quake response

World powers rush to offer Turkey, Syria aid over quake

Biden 'deeply saddened' by Turkey, Syria quake; pledges US aid

Syria says quake aid will reach all its people

CHIP TECH
New Galileo service set to deliver 20 cm accuracy

HawkEye 360 to monitor GPS interference in support of the US Space Force

Falcon 9 launches sixth GPS 3 satellite

Quectel expands its 5G and GNSS Combo Antennas Portfolio

CHIP TECH
The chemistry of mummification - Traces of a global network

Superhighways of first Australians reveals a 10,000-year journey through the continent

Earliest evidence found of Neanderthals killing elephants for food

Brazilian army deploys to protect Indigenous Yanomami

CHIP TECH
South Africa rhino poachers spread from national parks

Sumatran tiger captured in Indonesia after second human attack

Endangered monarch butterflies face perilous storm

Marmot death overshadows Canada Groundhog Day

CHIP TECH
China to fully reopen borders with Hong Kong, Macau

African nations commit to ending AIDS in children by 2030

Beijing has hit 'temporary herd immunity': official

The Covid-19 pandemic in 10 figures

CHIP TECH
Disney+ in Hong Kong drops 'Simpsons' episode with 'forced labour' mention

UN experts alarmed at child 'forced assimilation' in Tibet

China's mega-rich move their wealth, and partying, to Singapore

Hong Kong's largest national security trial to begin with 47 in dock

CHIP TECH
US designates Russia's Wagner military group an intl 'criminal organization'

UN alarmed at disappearance of two Mexican activists

Latin American cocaine cartels bring violence to Europe

Global piracy acts drop to 14-year low: report

CHIP TECH
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.