Medical and Hospital News  
STELLAR CHEMISTRY
New research on giant radio galaxies defies conventional wisdom
by Staff Writers
Kent UK (SPX) Oct 28, 2019

File image of a young compact radio galaxy.

Conventional wisdom tells us that large objects appear smaller as they get farther from us, but this fundamental law of classical physics is reversed when we observe the distant universe.

Astrophysicists at the University of Kent simulated the development of the biggest objects in the universe to help explain how galaxies and other cosmic bodies were formed. By looking at the distant universe, it is possible to observe it in a past state, when it was still at a formative stage. At that time, galaxies were growing and supermassive black holes were violently expelling enormous amounts of gas and energy.

This matter accumulated into pairs of reservoirs, which formed the biggest objects in the universe, so-called giant radio galaxies. These giant radio galaxies stretch across a large part of the Universe. Even moving at the speed of light, it would take several million years to cross one.

Professor Michael D. Smith of the Centre for Astrophysics and Planetary Science, and student Justin Donohoe collaborated on the research. They expected to find that as they simulated objects farther into the distant universe, they would appear smaller, but in fact they found the opposite.

Professor Smith said: "When we look far into the distant universe, we are observing objects way in the past - when they were young. We expected to find that these distant giants would appear as a comparatively small pair of vague lobes. To our surprise, we found that these giants still appear enormous even though they are so far away."

Radio galaxies have long been known to be powered by twin jets which inflate their lobes and create giant cavities. The team performed simulations using the Forge supercomputer, generating three-dimensional hydrodynamics that recreated the effects of these jets. They then compared the resulting images to observations of the distant galaxies. Differences were assessed using a new classification index, the Limb Brightening Index (LB Index), which measures changes to the orientation and size of the objects.

Professor Smith said: "We already know that once you are far enough away, the Universe acts like a magnifying glass and objects start to increase in size in the sky. Because of the distance, the objects we observed are extremely faint, which means we can only see the brightest parts of them, the hot spots. These hot spots occur at the outer edges of the radio galaxy and so they appear to be larger than ever, confounding our initial expectations."

Research Report: The Morphological Classification of distant radio galaxies explored with three-dimensional simulations


Related Links
University of Kent
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
How supergiant stars repeatedly cool and heat up
Brussels, Belgium (SPX) Oct 14, 2019
An international team of professional and amateur astronomers, which includes Alex Lobel, astronomer at the Royal Observatory of Belgium, has determined in detail how the temperature of four yellow hypergiants increases from 4,000 degrees to 8,000 degrees and back again in a few decades. They publish their findings in the professional journal Astronomy and Astrophysics. The researchers analysed the light of four yellow hypergiants that has been observed on Earth over the past 50 to 100 years. Yell ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
World first study now separates living from the dead

Belgium, transit route for migrant smugglers

American CEO faces French lawmakers over chemical plant blaze

Facebook devotes $1 bn to affordable housing in US

STELLAR CHEMISTRY
GPS III Ground System Operations Contingency Program Nearing Operational Acceptance

ISRO works with Qualcomm to develop improved geo-location chipset

Satelles, Inc. Secures $26 Million in Series C Funding Round Led by C5 Capital

Highly accurate GPS is possible thanks to NASA

STELLAR CHEMISTRY
Marmosets can learn, adopt new dialects

Tar-covered flint tool suggests Neanderthals were surprisingly innovative

Scientists find early humans moved through Mediterranean earlier than believed

Human brain, braincase evolved independently, researchers say

STELLAR CHEMISTRY
Much of the Earth is still wild, but threatened by fragmentation

Insects on the move are trying to escape the heat

Mysterious new virus found spreading among bald eagles

Wild molds help scientists probe the histories of cheese fungi

STELLAR CHEMISTRY
Malaria could be felled by an Antarctic sea sponge

Russia says no threat after blast in lab holding smallpox

NASA pioneers malaria-predicting tech in Myanmar

STELLAR CHEMISTRY
Chinese billionaire claims Australia 'deep state' plot

China detains journalist who covered Hong Kong protests: sources

'White terror': Hong Kong's China critics beaten in targeted attacks

China's leaders to hold key conclave next week

STELLAR CHEMISTRY
Seventeen Chinese, Ukrainian seamen kidnapped off Cameroon

Asian, European seamen kidnapped off Cameroon: navy source

Myanmar 'categorically rejects' UN report on army business empire

STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.