Free Newsletters - Space - Defense - Environment - Energy
..
. Medical and Hospital News .




TECH SPACE
New sensor could prolong the lifespan of high-temperature engines
by Staff Writers
Cambridge, UK (SPX) Sep 24, 2013


Jet engine. Image courtesy Didier Jansen.

A temperature sensor developed by researchers at the University of Cambridge could improve the efficiency, control and safety of high-temperature engines. The sensor minimises drift -degradation of the sensor which results in faulty temperature readings and reduces the longevity of engine components.

The new sensor, or thermocouple, has been shown to reduce drift by 80 per cent at temperatures of 1200 degrees Celsius, and by 90 per cent at 1300 degrees Celsius, potentially doubling the lifespan of engine components. The results are published in the September issue of the Journal of Engineering for Gas Turbines and Power.

Generally, the hotter a jet engine burns, the more power it generates, improving fuel efficiency, range and thrust. However, an accurate temperature reading is critical, as when temperatures get too high, the mechanical integrity of engine components could be at risk. A temperature error of just ten degrees can trigger engine failure, which can be a huge blow to aircraft manufacturers, as seen in the 2010 recall of Rolls-Royce's Airbus A380 engines, which caused the company's share price to drop by a massive nine per cent.

Modern jet engines can reach temperatures as high as 1500 degrees, but drift in the nickel-based thermocouples used to measure temperature increases to unacceptable levels at temperatures above 1000 degrees. Therefore, the thermocouple is placed away from the hottest part of the engine, and the maximum temperature is extrapolated from that point.

The inaccuracy resulting from this form of measurement means that the engine temperature, and therefore efficiency, has to be set below maximum in order to leave a safety margin for the survival of engine components. Thermocouples with increased temperature capabilities can be placed closer to the combustion chamber, increasing the accuracy with which the peak temperature is estimated, and decreasing the required safety margin.

"A more stable temperature sensor provides several advantages - a better estimation of temperature can increase the lifetime of engine components and decrease maintenance costs to manufacturers, without any reduction in safety," said Dr Michele Scervini, a postdoctoral researcher in the Department of Materials Science and Metallurgy, who developed the new thermocouple.

In its simplest form, a thermocouple consists of two bare wires of two different metals joined together at their ends, with a voltmeter incorporated into the circuit. The difference between the two ends of the thermocouple is measured by the voltmeter and used to determine the temperature.

This type of thermocouple is not suitable for high-temperature applications as the elements oxidise above 800 degrees, increasing the amount of drift, so thermocouples sheathed in oxidation-resistant materials were introduced in the 1970s. While this configuration addressed the issue of oxidation, the sheath contaminated the wires at temperatures above 1000 degrees, increasing drift.

Scervini, along with Dr Cathie Rae, has developed a thermocouple which both withstands oxidisation and minimises any contamination to the wires from the metallic sheath. The thermocouple is made of an outer wall of a conventional oxidisation-resistant nickel alloy which can withstand high temperatures, and an inner wall of a different, impurity-free nickel alloy which prevents contamination while reducing drift.

Results from tests on a prototype device showed a significant reduction in drift at temperatures of 1200 and 1300 degrees, meaning that a double-walled thermocouple can be used at temperatures well above the current limitation of 1000 degrees.

There are platinum-based thermocouples which can withstand higher temperatures, but their extremely high cost means that they are not widely used. "Nickel is an ideal material for these applications as it is a good compromise between cost and performance, but there is a gap in the market for applications above 1000 degrees," said Scervini. "We believe our device could see widespread usage across a range of industries."

The team are currently commercialising their invention with the assistance of Cambridge Enterprise, the University's commercialisation arm, and have attracted interest from a range of industries. Tests on new prototypes are on-going.

The research leading to the new thermocouple has been funded by the European Community as part of the HEATTOP project. Additional funding from the European Community has been granted to the University of Cambridge to develop further the new thermocouple, as part of the STARGATE project. The paper "An Improved Nickel Based MIMS Thermocouple for High Temperature Gas Turbine Applications" is published in the September issue of the Journal of Engineering for Gas Turbines and Power.

.


Related Links
Cambridge Enteprise University of Cambridge
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News



International Conference on Protection of Materials and Structures From Space Environment



TECH SPACE
Balkans gold rush prompts pollution fears
Bucharest (AFP) Sept 24, 2013
Plans by mining companies to dig for gold in Romania and Greece have triggered massive opposition, with academics and environmentalists stressing that risks far outweigh benefits for the Balkan nations. In Romania, Canadian firms Gabriel Resources and Eldorado Gold as well as Kazakhstan's SAT & Company hope to start digging in 2016. In Greece, Eldorado Gold has similar plans for two site ... read more


TECH SPACE
China launches satellite to monitor natural disaster

Australia and Indonesia hold conciliatory discussions

FBI releases chilling video of navy yard shooter

Storm-stricken Acapulco hit by new floods

TECH SPACE
Astrium down selected for MOJ electronic tagging contract

Lockheed Martin GPS 3 Satellite Prototype Integrated With Raytheon OCX Ground Control Segment

China's navi-location industries to boom: white paper

OHN Christner Trucking Selects Orbcomm For Refrigerated Telematics Solution

TECH SPACE
Roma families face wholesale expulsion from France

Genetic study pushes back timeline for first significant human population expansion

Your brain digitally remastered for clarity of thought

Findings in Middle East suggest early human routes into Europe

TECH SPACE
Tick tock: Marine animals with at least two clocks

Europe's bison, beavers and bears bounce back: report

Global partnership formed to save African elephants in protected areas

Study finds 'microbial clock' may help determine time of death

TECH SPACE
Projected climate change in West Africa not likely to worsen malaria situation

HIV infections plummet since 2001: UN

Disarming HIV With a "Pop"

AIDS epidemic's end by 2030 seen: UN official

TECH SPACE
Hong Kong implements official benchmark on poverty

China web users' scathing critique of giant Tiananmen vase

China Tiananmen Square makeover meets cost complaints

Nearly 9 in 10 kids in China know cigarette logos: study

TECH SPACE
TECH SPACE
Japan leader set to announce crucial sales tax hike

China manufacturing expands in September: HSBC

US Fed probing market trades before policy release

China house price increases gain speed in September: survey




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement