. Medical and Hospital News .




.
NANO TECH
New structural information on functionalization of gold nanoparticles
by Staff Writers
Helsinki, Finland (SPX) Aug 07, 2012

This is a visualization of the atomic structure of the Au102(p-MBA)44 particle (left) and the partially ligand-exchanged Au102(p-MBA)40(p-BBT)4 (right). The exchanged ligand bromo benzene thiol (p-BBT) is schematically shown in the middle and the observed ligand exchange sites by red and blue on the right.

Nanometre-scale gold particles are currently intensively investigated for possible applications as catalysts, sensors, biolabels, drug delivery devices, biological contrast agents and as components in photonics and molecular electronics. The particles are prepared in a solution from gold salts and their reactive gold cores can be stabilized with various organic ligands.

Particularly stable particles can be synthesized by using organothiol ligands that have a strong chemical interaction to gold, producing precise compositions in the size range of 1 to 3 nanometres. Modification of the protecting molecular overlayer is a key step in almost all applications. A detailed structural atomistic understanding of the processes of the exchange reaction has been lacking.

Now, professors Chris Ackerson in the Colorado State University in Ft. Collins, USA, and Hannu Hakkinen at the Nanoscience Center of the University of Jyvaskyla, Finland, report the first structural study on the atomistic processes of a ligand-exchange reaction of a well-defined gold nanoparticle that has 102 gold atoms and 44 ligand sites in the molecular overlayer.

The study was published in the Journal of the American Chemical Society on 21 July 2012 [1]. Prof. Hakkinen's work is funded by the Academy of Finland and prof. Ackerson's work is funded by the Colorado State University and the American Federation for Aging Research.

The studied particle has a chemical formula of Au102(p-MBA)44 and it was made by using a water-soluble thiol (para - mercapto benzoic acid, p-MBA) as the stabilizing molecule.

The X-ray crystal structure of this particle was first reported as the cover article of Science in 2007 by the group of Roger D. Kornberg from Stanford University [2]. Hakkinen led an international team of researchers that published a theoretical analysis of this and other thiol-stabilized gold nanoparticles in 2008 in the Proceedings of the National Academy of Sciences [3].

In the new study, Ackerson's group succeeded in making heterogeneous crystals of samples of Au102 particles that had undergone a ligand-exchange reaction where the p-MBA thiols in the molecular overlayer had been partially exchanged to a similar thiol containing a Bromine atom, the so-called para - bromo benzene thiol (p-BBT), under a fast 5-minute reaction.

The analysis of the heterogeneous crystals showed which ligand sites in the overlayer are the most likely to be changed during the short reaction time, i.e., from which sites the exchange process starts. Surprisingly, only 4 sites out of the 44 possibilities showed occupation by the exchanged ligand (see Figure).

Theoretical analysis performed by Hakkinen's group gave insight into the atomistic details of possible reaction mechanisms. Evidence from experiment and theory indicates that the Au102(p-MBA)44 nanoparticle has a thiol overlayer where almost every thiol ligand site has its own reaction rate due to a highly heterogeneous structure of the overlayer.

"The Au102(p-MBA)44 nanoparticle has a structure reminiscent of a protein, with a rigid inorganic gold core analogous to the alpha-carbon backbone of a protein core and chemically modifiable functional groups in the low-symmetry molecular overlayer", says prof. Ackerson.

"When ligand exchange reactions are better understood, we hope to fully control the surface functionalization of the Au102 and similar water-soluble gold nanoparticles. The implications in biology for a fully controllable synthetic surface the size of a protein are profound", says prof. Hakkinen.

The other researchers involved in the work are Christine Heinecke, Thomas Ni and Andrea Wong from Ft. Collins and Sami Malola and Ville Makinen from Jyvaskyla. The massively parallel computations needed for interpretation of the experimental observations were made in the Louhi supercomputer at CSC - the Finnish IT Center for Science in Espoo.

1. C.L. Heinecke, T.W. Ni, S.A. Malola, V.P. Makinen, O.A. Wong, H. Hakkinen and C.J. Ackerson, "Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters", J. Am. Chem. Soc., published online July 21, 2012. 2. P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell and R.D. Kornberg, "Structure of a thiol monolayer-protected gold nanoparticle at 1.1. Angstrom resolution", Science 318, 430 (2007). 3. M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Gronbeck, H. Hakkinen, "A unified view of ligand-protected gold clusters as superatom complexes", Proc. Natl. Acad. Sci. (USA) 105, 9157 (2008).

Related Links
Academy of Finland
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
A giant step in a miniature world
Zurich, Switzerland (SPX) Aug 02, 2012
In order to observe the individual particles in a solution, Prof. Madhavi Krishnan and her co-workers "entice" each particle into an "electrostatic trap". It works like this: between two glass plates the size of a chip, the researchers create thousands of round energy holes. The trick is that these holes have just a weak electrostatic charge. The scientists than add a drop of the solution ... read more


NANO TECH
FEMA cell-phone alerts warn too many

Queen, politicians, Nobel winner named to UN social panel

Sri Lanka navy urges Australia to deport boatpeople

Samurai festival returns to disaster-hit Japan

NANO TECH
Raytheon completes GPS OCX iteration 1.4 Critical Design Review

Mission accomplished, GIOVE-B heads into deserved retirement

Boeing Ships 3rd GPS IIF Satellite to Cape Canaveral for Launch

GPS Can Now Measure Ice Melt, Change In Greenland Over Months Rather Than Years

NANO TECH
It's in our genes: Why women outlive men

Later Stone Age got earlier start in South Africa than thought

Modern culture 44,000 years ago

Hey, I'm over here: Men and women see things differently

NANO TECH
Study shows how elephants produce their deep 'voices'

More code cracking

Boston University researchers expand synthetic biology's toolkit

Smell the potassium

NANO TECH
Vaccine research shows vigilance needed against evolution of more-virulent malaria

New influenza virus from seals highlights the risks of pandemic flu from animals

An avian flu that jumps from birds to mammals is killing New England's baby seals

New bird flu virus killing US baby seals: study

NANO TECH
China's passion for fashion catapults blogger to stardom

China accuses US of prejudice on religious issues

Tibetan dies after setting himself alight: rights group

Dissident Chen raises China concerns with US

NANO TECH
Nigeria intensifies search for 4 kidnapped foreigners: navy

Somali pirates release Taiwan fishing boat

ONR Sensor and Software Suite Hunts Down More Than 600 Suspect Boats

Netherlands beefs up anti-piracy forces

NANO TECH
Walker's World: August, the cruel month

US watchdog doubts Standard Chartered's 'core values'

Asia business confidence falters on China: survey

Outside View: Unemployment rises


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement