Medical and Hospital News  
NANO TECH
New technique builds super-hard metals from nanoparticles
by Staff Writers
Providence RI (SPX) Jan 25, 2021

Researchers from Brown University have demonstrated a way to make bulk metals from nanoparticle building blocks. For a new study, the team made metal "coins" from nanoparticles of gold, silver, palladium and other metals.

Metallurgists have all kinds of ways to make a chunk of metal harder. They can bend it, twist it, run it between two rollers or pound it with a hammer. These methods work by breaking up the metal's grain structure - the microscopic crystalline domains that form a bulk piece of metal. Smaller grains make for harder metals.

Now, a group of Brown University researchers has found a way to customize metallic grain structures from the bottom up. In a paper published in the journal Chem, the researchers show a method for smashing individual metal nanoclusters together to form solid macro-scale hunks of solid metal. Mechanical testing of the metals manufactured using the technique showed that they were up to four times harder than naturally occurring metal structures.

"Hammering and other hardening methods are all top-down ways of altering grain structure, and it's very hard to control the grain size you end up with," said Ou Chen, an assistant professor of chemistry at Brown and corresponding author of the new research. "What we've done is create nanoparticle building blocks that fuse together when you squeeze them. This way we can have uniform grain sizes that can be precisely tuned for enhanced properties."

For this study, the researchers made centimeter-scale "coins" using nanoparticles of gold, silver, palladium and other metals. Items of this size could be useful for making high-performance coating materials, electrodes or thermoelectric generators (devices that convert heat fluxes into electricity). But the researchers think the process could easily be scaled up to make super-hard metal coatings or larger industrial components.

The key to the process, Chen says, is the chemical treatment given to the nanoparticle building blocks. Metal nanoparticles are typically covered with organic molecules called ligands, which generally prevent the formation of metal-metal bonds between particles. Chen and his team found a way to strip those ligands away chemically, allowing the clusters to fuse together with just a bit of pressure.

The metal coins made with the technique were substantially harder than standard metal, the research showed. The gold coins, for example, were two to four times harder than normal. Other properties like electrical conduction and light reflectance were virtually identical to standard metals, the researchers found.

The optical properties of the gold coins were fascinating, Chen says, as there was a dramatic color change when the nanoparticles were compressed into bulk metal.

"Because of what's known as the plasmonic effect, gold nanoparticles are actually purplish-black in color," Chen said. "But when we applied pressure, we see these purplish clusters suddenly turn to a bright gold color. That's one of the ways we knew we had actually formed bulk gold."

In theory, Chen says, the technique could be used to make any kind of metal. In fact, Chen and his team showed that they could make an exotic form of metal known as a metallic glass. Metallic glasses are amorphous, meaning they lack the regularly repeating crystalline structure of normal metals. That gives rise to remarkable properties. Metallic glasses are more easily molded than traditional metals, can be much stronger and more crack-resistant, and exhibit superconductivity at low temperatures.

"Making metallic glass from a single component is notoriously hard to do, so most metallic glasses are alloys," Chen said. "But we were able to start with amorphous palladium nanoparticles and use our technique to make a palladium metallic glass."

Chen says he's hopeful that the technique could one day be widely used for commercial products. The chemical treatment used on the nanoclusters is fairly simple, and the pressures used to squeeze them together are well within the range of standard industrial equipment. Chen has patented the technique and hopes to continue studying it.

"We think there's a lot of potential here, both for industry and for the scientific research community," Chen said.

Research paper


Related Links
Brown University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Scientists see competition of magnetic orders from 2D sheets of atoms
Washington DC (UPI) Jan 6, 2021
For the first time, scientists have observed competition between magnetic orders from coupled sheets of atoms. The observations, described Wednesday in the journal Nature, promise new insights into the quantum qualities of two-dimensional materials. Ever since a pair of British researchers were awarded the Nobel Prize in 2010 for the discovery of graphene, material scientists, electrical engineers, quantum physicists and others have been fascinated by the unusual electromagnetic qualities of 2D ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Indonesian medics overwhelmed by quake casualties

China rescuers drill new 'lifelines' to trapped gold miners

China defends Covid-19 response after criticism by experts

Indonesia landslide toll rises to 21 as rescuers search for missing

NANO TECH
China releases 4 new BDS technical standards

China sees booming satellite navigation, positioning industry

Galileo satellites help rescue Vendee Globe yachtsman

BeiDou navigation base in south China targets services in ASEAN

NANO TECH
Earliest human culture lasted 20,000 years later than previously thought

Identical twins not so identical after all: study

Researchers use DNA to track original settlers of Caribbean islands

Over half of Chinese adults now overweight: official

NANO TECH
Israel studies new forest home for endangered mountain gazelle

Scientists observe electric eels hunting in groups

Indigenous peoples wary of UN biodiversity rescue plan

Study: Game of Thrones' dire wolves, gray wolves were different species

NANO TECH
Serbia starts vaccination with Chinese-made Sinopharm

Chinese city rushes to build massive Covid-19 quarantine centre

Pompeo pushes new claim of China covering up Covid origin

Coronavirus: Latest global developments

NANO TECH
Alibaba's Jack Ma appears for first time since regulatory crackdown

Imprisoned Chinese rights lawyer in poor health: wife

Hong Kong national security police make 11 new arrests

Two Canadians detained in China allowed calls with relatives

NANO TECH
UK police given more time to hold tanker 'hijack' seven

Seven held for attempted hijacking off UK coast

NANO TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.