Medical and Hospital News  
TECH SPACE
New trigger for self-powered mechanical movement
by Staff Writers
University Park PA (SPX) Mar 02, 2016


This animation illustrates an enzyme pump pushing particles away, then drawing them in. It shows a top-down view of the simulated fluidic chamber containing an enzyme pump (represented by a yellow circle in the center). The pump causes a fluid flow that carries small, green particles, which are located near the bottom surface of the chamber. The direction of flow near the bottom of the chamber (indicated by arrows) changes over time. Initially, the flow pushes particles away from the pump (in the blue region). Later, the flow direction reverses and draws particles toward the pump (in the red region). View the animation here. Image courtesy University of Pittsburgh

A new way to use the chemical reactions of certain enzymes to trigger self-powered mechanical movement has been developed by a team of researchers at Penn State University and the University of Pittsburgh. A paper describing the team's research, titled "Convective flow reversal in self-powered enzyme micropumps," is published this week in the journal Proceedings of the National Academy of Sciences.

"These pumps provide precise control over flow rate without the aid of an external power source and are capable of turning on in response to specific chemicals in solution," said Ayusman Sen, Distinguished Professor of Chemistry at Penn State. "They also can remain viable and capable of turning on even after prolonged storage."

Sen and Penn State Graduate Student Isamar Ortiz did the research team's experiments, which reveal that "simple reactions triggered by enzymes can be used to combine sensing and fluid pumping into single non-mechanical, self-powered, nano/microscale pumps that precisely control flow rate, and that turn on in response to specific stimuli," said Sen, who also made the initial discovery of enzyme pumps.

Potential uses of the self-powered enzyme micropumps include detecting substances, moving particles to build small structures, and delivering medications. "One potential use is the release of insulin to a diabetes patient from a reservoir at a rate proportional to the concentration of glucose in the person's blood," Sen said.

"Another example is an enzyme pump that is triggered by nerve toxins to release an antidote agent to decontaminate and treat an exposed person. Also, because enzyme pumps can pump particles suspended in a fluid, it also should be possible to use them to assemble or disassemble small structures in specific locations by directional pumping."

Anna C. Balazs, Distinguished Professor of Chemical and Petroleum Engineering at Pitt's Swanson School of Engineering, who developed the team's computational modeling for this research with post-doctoral associate Henry Shum, said "Small-scale chemical synthesis and analysis commonly occur in fluid-filled chambers and require monitoring and intervention. Ideally, you would prefer that the process be as autonomous as possible."

Shum explained, "The chemical reaction causes a change in the density of the fluid, leading to a fluid flow. It creates a chemo-mechanical transduction, which is a beautiful example of chemical energy creating mechanical action, much in the same way that the human body converts chemical energy from food into movement." Shum examined the factors that cause variations in density in the enzymatic reactions and developed a mathematical model that enabled him to map a parameter range where the fluid could move in different directions at different times.

Ortiz's experiments at Penn State with the urease enzyme agree with the simulations at Pitt. Unlike other enzymes, which always pumped fluid in the same direction, the urease enzyme generated an unexpected flow pattern, with the direction of flow changing over space and time.

The resulting chemical reaction network is analogous to an electrical system in a computer. Since each enzyme will behave differently, a multistage chemical reaction could be "programmed" into an experiment, with each step generating flow as determined by the action of a specific enzyme.

"Much like Disney's "The Sorcerer's Apprentice," where you could snap your fingers and have mops and brooms clean your room for you, it's a scientist's wish to create systems which behave autonomously and controllably," Balazs said.

Even more complex behavior could be built up using different enzymes placed at different locations to create a dynamic cascade of events. Ortiz said, "The self-powered enzyme pumps could be used as self-regulated, stimuli-responsive, active, delivery vehicles."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Penn State
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Crystal and magnetic structure of multiferroic hexagonal manganite
Chester, UK (SPX) Feb 25, 2016
Ever since Curie conjectured on "the symmetry in physical phenomena, symmetry of an electric field and a magnetic field", it has long been a dream for material scientists to search for this rather unusual class of material exhibiting the coexistence of magnetism and ferroelectricity in a single compound known as a multiferroic compound. Multiferroic materials are a class of crystalline mat ... read more


TECH SPACE
Nuclear water: Fukushima still faces contamination crisis

Screening truffles for radioactivity 30 years from Chernobyl

MH370 lawsuits gain pace as two-year deadline nears

Brazil police charge seven in Samarco mine deaths: reports

TECH SPACE
Europe speeds up launches for sat-nav system

NASA Contributes to Global Navigation Standard Update

Sea level mapped from space with GPS reflections

Wirepas launches a dedicated connectivity product for beacons

TECH SPACE
Easter Island not destroyed by war, analysis of 'spear points' shows

Neanderthals and modern H. sapiens crossbred over 100,000 years ago

Neanderthals mated with modern humans much earlier than previously thought

Modern 'Indiana Jones' on mission to save antiquities

TECH SPACE
Dodos might have been quite intelligent, new research finds

Humans speeding up evolution by causing extinction of 'younger' species

Creation of an island: The extinction of animals on Zanzibar

Fifth of Finland's wolves killed in month-long cull

TECH SPACE
Brazil military fight mosquitoes, flower pot to flower pot

What does turbulence have in common with an epidemic?

New study highlights effectiveness of a herpesvirus CMV-based vaccine against Ebola

Brazil army will go door-to-door in fight against Zika

TECH SPACE
Chinese rights lawyer masterminded "illegal religious gatherings": report

China takes down gay online drama: report

Hong Kong finance chief warns of political unrest as economy weakens

Flagship gallery show raises fears for Hong Kong arts

TECH SPACE
Two Mexican marines, suspect killed in shootout

TECH SPACE
G20 nations pledge all tools to lift growth

G20 nations face slowing global growth in China meeting

China cuts reserve requirements in bid to boost economy

China central bank chief seeks to reassure on yuan, growth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.