. Medical and Hospital News .




.
SPACE TRAVEL
Not your average heat shield
by Staff Writers
Washington DC (SPX) Mar 27, 2012

This figure shows that the object in the center of the cloak (letters OSA) stays cold, while the heat diffuses elsewhere. The source of the heat is on the left-hand side and at a constant temperature of 100 degrees C, and the material inside the invisibility region remains cold. Credit: Image courtesy Sebastien Guenneau, Institut Fresnel, CNRS/AMU.

In a new approach to invisibility cloaking, a team of French researchers has proposed isolating or cloaking objects from sources of heat-essentially "thermal cloaking."

This method, which the researchers describe in the Optical Society's (OSA) open-access journal Optics Express, taps into some of the same principles as optical cloaking and may lead to novel ways to control heat in electronics and, on an even larger scale, might someday prove useful for spacecraft and solar technologies.

Recent advances in invisibility cloaks are based on the physics of transformation optics, which involves metamaterials and bending light so that it propagates around a space rather than through it.

Sebastien Guenneau, affiliated with both the University of Aix-Marseille and France's Centre National de la Recherche Scientifique (CRNS), decided to investigate, with CRNS colleagues, whether a similar approach might be possible for thermal diffusion.

"Our key goal with this research was to control the way heat diffuses in a manner similar to those that have already been achieved for waves, such as light waves or sound waves, by using the tools of transformation optics," says Guenneau.

Though this technology uses the same fundamental theories as recent advances in optical cloaking, there is a key difference. Until now, he explains, cloaking research has revolved around manipulating trajectories of waves.

These include electromagnetic (light), pressure (sound), elastodynamic (seismic), and hydrodynamic (ocean) waves. The biggest difference in their study of heat, he points out, is that the physical phenomenon involved is diffusion, not wave propagation.

"Heat isn't a wave-it simply diffuses from hot to cold regions," Guenneau says. "The mathematics and physics at play are much different. For instance, a wave can travel long distances with little attenuation, whereas temperature usually diffuses over smaller distances."

To create their thermal invisibility cloak, Guenneau and colleagues applied the mathematics of transformation optics to equations for thermal diffusion and discovered that their idea could work.

In their two-dimensional approach, heat flows from a hot to a cool object with the magnitude of the heat flux through any region in space represented by the distance between isotherms (concentric rings of diffusivity).

They then altered the geometry of the isotherms to make them go around rather than through a circular region to the right of the heat source-so that any object placed in this region can be shielded from the flow of heat (see image).

"We can design a cloak so that heat diffuses around an invisibility region, which is then protected from heat. Or we can force heat to concentrate in a small volume, which will then heat up very rapidly," Guenneau says.

The ability to shield an area from heat or to concentrate it are highly desirable traits for a wide range of applications. Shielding nanoelectronic and microelectronic devices from overheating, for example, is one of the biggest challenges facing the electronics and semiconductor industries, and an area in which thermal cloaking could have a huge impact.

On a larger scale and far into the future, large computers and spacecraft could also benefit greatly. And in terms of concentrating heat, this is a characteristic that the solar industry should find intriguing.

Guenneau and colleagues are now working to develop prototypes of their thermal cloaks for microelectronics, which they expect to have ready within the next few months.

Paper: "Transformation Thermodynamics: Cloaking and Concentrating Heat Flux," Guenneau et al., Optics Express, Vol. 20, Issue 7, pp. 8207-8218.

Related Links
Optical Society of America
Space Tourism, Space Transport and Space Exploration News




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



SPACE TRAVEL
SciTechTalk: Can long space missions work?
Washington DC (UPI) Mar 25, 2012
As the United States considers a manned mission to Mars by the mid-2030s, ongoing research is beginning to raise doubts about the ability of human astronauts to survive such a multi-year journey in zero gravity without severe and possibly permanent physical or psychological damage. One of the most pressing concerns, researchers say, would be the effect on their vision, as acceleration o ... read more


SPACE TRAVEL
Work on new Chernobyl sarcophogus to start next month

Money-mad Singapore aims to become non-profit hub

TEPCO execs 'should face poverty' over Fukushima

Australia braces for cyclone, floods

SPACE TRAVEL
GIS Technology Offers New Predictive Analysis to Business

Navigation devices in market woes

Iris: watch how satcoms help pilots

Smartphones can help track diseases

SPACE TRAVEL
Population adds to planet's pressure cooker, but few options

Why the world in our head stays still when we move our eyes

Focus on technology overlooks human behavior when addressing climate change

New research about facial recognition turns common wisdom on its head

SPACE TRAVEL
Scientists discover new method of proton transfer

Thai man arrested in S.Africa over alleged rhino poaching

Kazakhstan sounds alarm over dying Caspian seals

Zimbabwe says Trump sons' hunt legal

SPACE TRAVEL
Bird flu claims sixth victim this year in Indonesia

Swine flu outbreak in India kills 12: govt

New vaccine strategy to advance solutions for tuberculosis

Smartphones more accurate, faster, cheaper for disease surveillance

SPACE TRAVEL
China blames Dalai Lama for India immolation bid

Delhi immolation protester haunted by Tibet 'torture'

Amnesty sees hope in China on death penalty

Tibetan protester sets himself ablaze in New Delhi

SPACE TRAVEL
African piracy a threat to U.S. security?

NATO extends anti-piracy mission until 2014

Security improves in Mekong river

Pirates kill four Nigerian soldiers in creek attack: army

SPACE TRAVEL
China slowdown chills Australian surplus hopes

Japan logs surprise February trade surplus

China cuts reserve requirements for farm lender

China manufacturing slows, spurring growth fears


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement