Medical and Hospital News
CHIP TECH
Novel hardware approach offers new quantum-computing paradigm
SPX stock illustration only
Novel hardware approach offers new quantum-computing paradigm
by Staff Writers
Los Alamos NM (SPX) Aug 16, 2023

A potentially game-changing theoretical approach to quantum computing hardware avoids much of the problematic complexity found in current quantum computers. The strategy implements an algorithm in natural quantum interactions to process a variety of real-world problems faster than classical computers or conventional gate-based quantum computers can.

"Our finding eliminates many challenging requirements for quantum hardware," said Nikolai Sinitsyn, a theoretical physicist at Los Alamos National Laboratory. He is coauthor of a paper on the approach in the journal Physical Review A. "Natural systems, such as the electronic spins of defects in diamond, have precisely the type of interactions needed for our computation process."

Sinitsyn said the team hopes to collaborate with experimental physicists also at Los Alamos to demonstrate their approach using ultracold atoms. Modern technologies in ultracold atoms are sufficiently advanced to demonstrate such computations with about 40 to 60 qubits, he said, which is enough to solve many problems not currently accessible by classical, or binary, computation. A qubit is the basic unit of quantum information, analogous to a bit in familiar classical computing.

Longer-lived qubits
Instead of setting up a complex system of logic gates among a number of qubits that must all share quantum entanglement, the new strategy uses a simple magnetic field to rotate the qubits, such as the spins of electrons, in a natural system. The precise evolution of the spin states is all that is needed to implement the algorithm. Sinitsyn said the approach could be used to solve many practical problems proposed for quantum computers.

Quantum computing remains a nascent field handicapped by the difficulty of connecting qubits in long strings of logic gates and maintaining the quantum entanglement required for computation. Entanglement breaks down in a process known as decoherence, as the entangled qubits begin to interact with the world outside the quantum system of the computer, introducing errors. That happens quickly, limiting the computation time. True error correction has not yet been implemented on quantum hardware.

The new approach relies on natural rather than induced entanglement, so it requires fewer connections among qubits. That reduces the impact of decoherence. Thus, the qubits live for a relatively a long time, Sinitsyn said.

The Los Alamos team's theoretical paper showed how the approach could solve a number-partitioning problem using Grover's algorithm faster than existing quantum computers. As one of the best-known quantum algorithms, it allows unstructured searches of large data sets that gobble up conventional computing resources. For instance, Sinitsyn said, Grover's algorithm can be used to divvy up the runtime for tasks equally between two computers, so they finish at the same time, along with other practical jobs. The algorithm is well-suited to idealized, error-corrected quantum computers, although it is difficult to implement on today's error-prone machines.

Protected against errors
Quantum computers are built to perform computations much faster than any classical device can do, but they have been extremely hard to realize so far, Sinitsyn said. A conventional quantum computer implements quantum circuits - sequences of elementary operations with different pairs of qubits.

The Los Alamos theorists proposed an intriguing alternative.

"We noticed that for many famous computational problems it is sufficient to have a quantum system with elementary interactions, in which only a single quantum spin - realizable with two qubits - interacts with the rest of the computational qubits," Sinitsyn said. "Then a single magnetic pulse that acts only on the central spin implements the most complex part of the quantum Grover's algorithm." Called the Grover's oracle, this quantum operation points to the desired solution.

"No direct interactions between the computational qubits and no time-dependent interactions with the central spin are needed in the process," he said. Once the static couplings between the central spin and qubits are set, the entire computation consists only of applying simple time-dependent external field pulses that rotate the spins, he said.

Importantly, the team proved that such operations can be made fast. The team also discovered that their approach is topologically protected. That is, it is robust against many errors in the precision of the control fields and other physical parameters even without quantum error correction.

Research Report:Topologically protected Grover's oracle for the partition problem

Related Links
Los Alamos National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Biden announces curbs on US investments in China
Washington (AFP) Aug 10, 2023
US President Joe Biden on Wednesday issued an executive order aimed at restricting certain American investments in sensitive high-tech areas in China - a move Beijing blasted as being "anti-globalization". The long-anticipated rules, expected to be implemented next year, target sectors like semiconductors and artificial intelligence, as Washington seeks to limit access to key technologies. "The commitment of the United States to open investment is a cornerstone of our economic policy and provid ... read more

CHIP TECH
Japan to start releasing Fukushima water on Thursday

Water release finds little support in Fukushima

Japan PM says no decision on Fukushima water release date

Japan PM to visit Fukushima plant before water release

CHIP TECH
Present and future of satellite navigation

New Galileo station goes on duty

Potential earthquake precursor discovered through GPS measurements

Northrop Grumman's new airborne navigation system achieves successful flight test

CHIP TECH
Just 5000 steps can save your life

A climate-orchestrated early human love story

Indigenous groups call for bold steps at Amazon summit

Workers less productiv, make more typos in afternoon and especially on Fridays

CHIP TECH
U.S. designates 3 DRC officials over trafficking wildlife

Baghdad zoo animals suffer as mercury hits 50 degrees

Australia's defence department charged over crocodile attack

Oldest extant plant has adapted to extremes and is threatened by climate change

CHIP TECH
US widens blacklist of firms over Uyghur forced labor concerns

Ancient pathogens emerging from melting ice and permafrost risk eroding ecosystems

Croatia targets latest climate-change threat: mosquitoes

MIT researchers to lead a new center for continuous mRNA manufacturing

CHIP TECH
Ballgowns, surveillance and cloning for sale at China pet fair

Young Chinese scratch an economic itch with lottery cards

Convoy of Chinese engineers attacked in Pakistan's Gwadar: militants

'I miss the sun,' says Australian journalist detained in China

CHIP TECH
Report faults British government for 'dismal understanding' of Wagner threat

China tells Myanmar junta to 'root out' online scam groups

US sanctions Chinese, Mexican entities over drug equipment

Malaysia searches Chinese ship suspected of looting WWII wrecks

CHIP TECH
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.