Medical and Hospital News  
BIO FUEL
Novel photocatalyst effectively turns carbon dioxide into methane fuel with light
by Staff Writers
Hong Kong (SPX) Feb 04, 2021

Dr Ng and his team synthesised a new photocatalyst by enwrapping cuprous oxide with copper-based metal-organic frameworks.

Carbon dioxide (CO2) is one of the major greenhouse gases causing global warming. If carbon dioxide could be converted into energy, it would be killing two birds with one stone in addressing the environmental issues. A joint research team led by City University of Hong Kong (CityU) has developed a new photocatalyst which can produce methane fuel (CH4) selectively and effectively from carbon dioxide using sunlight. According to their research, the quantity of methane produced was almost doubled in the first 8 hours of the reaction process.

The research was led by Dr Ng Yun-hau, Associate Professor in the School of Energy and Environment (SEE), in collaboration with researchers from Australia, Malaysia and the United Kingdom.

Nature-inspired photocatalysis
"Inspired by the photosynthesis in nature, carbon dioxide can now be converted effectively into methane fuel by our newly designed solar-powered catalyst, which will lower carbon emission. Furthermore, this new catalyst is made from copper-based materials, which is abundant and hence affordable," said Dr Ng.

He explained that it is thermodynamically challenging to convert carbon dioxide into methane using a photocatalyst because the chemical reduction process involves a simultaneous transfer of eight electrons. Carbon monoxide, which is harmful to human, is more commonly produced in the process because it requires the transfer of two electrons only.

He pointed out that cuprous oxide (Cu2O), a semiconducting material, has been applied as both photocatalyst and electrocatalyst to reduce carbon dioxide into other chemical products like carbon monoxide and methane in different studies.

However, it faces several limitations in the reduction process, including its inferior stability and the non-selective reduction which causes the formation of an array of various products. Separation and purification of these products from the mixture can be highly challenging and this imposes technological barrier for large scale application. Furthermore, cuprous oxide can be easily corroded after brief illumination and evolve into metallic copper or copper oxide.

Selective production of pure methane
To overcome these challenges, Dr Ng and his team synthesised a novel photocatalyst by enwrapping cuprous oxide with copper-based metal-organic frameworks (MOFs). Using this new catalyst, the team could manipulate the transfer of electrons and selectively produce pure methane gas.

They discovered that when compared with cuprous oxide without MOF shell, cuprous oxide with MOF shell reduced carbon dioxide into methane stably under visible-light irradiation with an almost doubled yield. Also, cuprous oxide with MOF shell was more durable and the maximum carbon dioxide uptake was almost seven times of the bare cuprous oxide.

Carbon dioxide uptake increased
The team encapsulated the one-dimensional (1-D) cuprous oxide nanowires (with a diameter of about 400nm) with the copper-based MOF outer shell of about 300nm in thickness. This conformal coating of MOF on cuprous oxide would not block light-harvesting of the catalyst.

Besides, MOF is a good carbon dioxide adsorbent. It provided considerable surface areas for carbon dioxide adsorption and reduction. As it was closely attached to the cuprous oxide, it brought a higher concentration of carbon dioxide adsorbed at locations near the catalytic active sites, strengthening the interaction between carbon dioxide and the catalyst.

Moreover, the team discovered that the cuprous oxide was stabilised by the conformal coating of MOF. The excited charges in cuprous oxide upon illumination could efficiently migrate to the MOF. In this way, excessive accumulation of excited charges within the catalyst which could lead to self-corrosion was avoided, hence extended the catalyst's lifetime.

Electrons stayed in MOF with higher chance of having chemical reactions
Dr Wu Hao, the first author of the paper who is also from SEE, pointed out one of the highlights of this research and said: "By using the advanced time-resolved photoluminescence spectroscopy, we observed that once the electrons were excited to the conduction band of the cuprous oxide, they would be directly transferred to the lowest unoccupied molecular orbital (LUMO) of the MOF and stayed there, but did not return quickly to their valence band, which is of lower energy. This created a long-lived charge separated state. Therefore, electrons that stayed in the MOF would have a higher chance to undergo chemical reactions."

Extends the understanding of relationships between MOFs and metal oxides
Previously, it was generally believed that the improved photocatalytic activities were merely induced by MOF's reactant concentration effect and MOF only served as a reactant adsorbent. However, Dr Ng's team unveiled how the excited charges migrate between cuprous oxide and MOF in this research.

"MOF is proven to play a more significant role in shaping the reaction mechanism as it changes the electron pathway," he said. He pointed out that this discovery has extended the understanding of relationships between MOFs and metal oxides beyond their conventional physical/chemical adsorption type of interactions to facilitating charge separation.

The team has spent more than two years to develop this effective strategy in converting carbon dioxide. Their next step will be to further increase the methane production rate and explore ways to scale up both the synthesis of the catalyst and the reactor systems. "In the entire process of converting carbon dioxide to methane, the only energy input we have used was sunlight. We hope in the future, carbon dioxide emitted from factories and transportation can be 'recycled' to produce green fuels," concluded Dr Ng.

Research Report: "Metal-Organic Frameworks Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4".


Related Links
City University Of Hong Kong
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Australia supplying wood pellets for the Japanese electricity market
Adelaide, Australia (SPX) Feb 02, 2021
International Bio Fuels Marketing (IBFM) has entered into contracts with French energy giant Engie to build four wood pellet plants in Asia with construction starting this year. The joint venture, which has established a Singapore-based company called Consolidated Biomass, plans to begin construction of the first plant in Vietnam in about September. Work on a second plant is scheduled to begin in early 2022 with the construction of two more plants in Malaysia to start from late next year. Ea ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
NASA, Rio De Janeiro Extend Disaster Preparedness Partnership

Athens urged to act quickly on lead risk at migrant camp

'I feel like I am reborn': Rescued Chinese miners speak of relief

Nine trapped Chinese miners confirmed dead, one still missing

BIO FUEL
European Commission awards launch contracts for next generation of Galileo satellites

NASA advancing global navigation satellite system capabilities

China releases 4 new BDS technical standards

China sees booming satellite navigation, positioning industry

BIO FUEL
Pace of prehistoric human innovation could be revealed by 'linguistic thermometer'

Milk-stained teeth reveal early dairy consumption in Africa

Deep sleep takes out the trash

Objects suggest Europeans used standardized money 4,000 years ago

BIO FUEL
Senegal closes bird park after mass pelican deaths

Nigeria seizes pangolin scales bound for Vietnam

EU chief calls for Paris-style biodiversity pact

The surprises of color evolution

BIO FUEL
Virus origin probe set to begin as China and US trade barbs

W.House demands 'robust' intl. probe into Covid-19 origins

Hong Kong turns to 'ambush lockdowns' to fight virus

Wuhan next-of-kin say China silencing them as WHO visits

BIO FUEL
UK says upholding 'freedom and autonomy' with new HK visas

In multiple messsages, Biden warns Beijing over expansionism

China's virus vigilance trashes travel plans for millions

Australia says Xi's caring rhetoric does not match actions

BIO FUEL
BIO FUEL








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.