Medical and Hospital News  
TIME AND SPACE
ORNL demonstrates large-scale technique to produce quantum dots
by Staff Writers
Oak Ridge TN (SPX) May 20, 2016


Watch a video on the research here.

A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory.

While zinc sulfide nanoparticles - a type of quantum dot that is a semiconductor - have many potential applications, high cost and limited availability have been obstacles to their widespread use. That could change, however, because of a scalable ORNL technique outlined in a paper published in Applied Microbiology and Biotechnology.

Unlike conventional inorganic approaches that use expensive precursors, toxic chemicals, high temperatures and high pressures, a team led by ORNL's Ji-Won Moon used bacteria fed by inexpensive sugar at a temperature of 150 degrees Fahrenheit in 25- and 250-gallon reactors. Ultimately, the team produced about three-fourths of a pound of zinc sulfide nanoparticles - without process optimization, leaving room for even higher yields.

The ORNL biomanufacturing technique is based on a platform technology that can also produce nanometer-size semiconducting materials as well as magnetic, photovoltaic, catalytic and phosphor materials. Unlike most biological synthesis technologies that occur inside the cell, ORNL's biomanufactured quantum dot synthesis occurs outside of the cells. As a result, the nanomaterials are produced as loose particles that are easy to separate through simple washing and centrifuging.

The results are encouraging, according to Moon, who also noted that the ORNL approach reduces production costs by approximately 90 percent compared to other methods.

"Since biomanufacturing can control the quantum dot diameter, it is possible to produce a wide range of specifically tuned semiconducting nanomaterials, making them attractive for a variety of applications that include electronics, displays, solar cells, computer memory, energy storage, printed electronics and bio-imaging," Moon said.

Successful biomanufacturing of light-emitting or semiconducting nanoparticles requires the ability to control material synthesis at the nanometer scale with sufficiently high reliability, reproducibility and yield to be cost effective. With the ORNL approach, Moon said that goal has been achieved.

Researchers envision their quantum dots being used initially in buffer layers of photovoltaic cells and other thin film-based devices that can benefit from their electro-optical properties as light-emitting materials.

Co-authors of the paper, titled "Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors," were ORNL's Tommy Phelps, Curtis Fitzgerald Jr., Randall Lind, James Elkins, Gyoung Gug Jang, Pooran Joshi, Michelle Kidder, Beth Armstrong, Thomas Watkins, Ilia Ivanov and David Graham. Funding for this research was provided by DOE's Advanced Manufacturing Office and Office of Science.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oak Ridge National Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Physicists measure van der Waals forces of individual atoms for the first time
Basel, Switzerland (SPX) May 17, 2016
Physicists at the Swiss Nanoscience Institute and the University of Basel have succeeded in measuring the very weak van der Waals forces between individual atoms for the first time. To do this, they fixed individual noble gas atoms within a molecular network and determined the interactions with a single xenon atom that they had positioned at the tip of an atomic force microscope. As expect ... read more


TIME AND SPACE
Artist Ai Weiwei says Gaza key part of refugee crisis

Belgian prisons 'like North Korea' as strike crisis hits

Nepal's quake recovery costs up by a quarter

Rush on pillows at Canada evacuation center

TIME AND SPACE
Payload integration begins for Arianespace's next Soyuz mission with Galileo spacecraft

Galileo satellites fuelled for flight

Satellites 11 and 12 join working Galileo fleet

Operation of 'Indian GPS' will take some more time: ISRO

TIME AND SPACE
Climate change may have contributed to extinction of Neanderthals

Drawing the genetic history of Ice Age Eurasian populations

Hominins may have been food for carnivores 500,000 years ago

Neandertals and Upper Paleolithic Homo sapiens had different dietary strategies

TIME AND SPACE
Berkeley Lab participates in new National Microbiome Initiative

Birth of rare Sumatran rhino hailed as major boost

Study: Cooperation, not struggle for survival, drives speciation, evolution

Saharan dust affects marine bacteria, potential pathogen Vibrio

TIME AND SPACE
NASA Helps Forecast Zika Risk

Cellphone-sized device quickly detects the Ebola virus

Threat of novel swine flu viruses in pigs and humans

TGen tracks the origins and spread of potentially deadly Valley Fever

TIME AND SPACE
Pavement glued down in Hong Kong for China official visit

Cultural Revolution demons haunt Chinese billionaire

Chinese executive 'confesses' to $800m fraud

China's Cultural Revolution, now highly collectible

TIME AND SPACE
Indonesia frees vessel captured by suspected pirates: navy

Founder of online underworld bank gets 20 years in prison

Colombia authorizes air strikes against criminal gangs

New force raids El Salvador gang districts

TIME AND SPACE
Currency wars, fiscal stimulus rift in focus at G7 meeting

Chinese pouring billions into US real estate: study

China economy eases in April, sparking worries on rebound

China producer price falls slow in April: govt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.