. Medical and Hospital News .




CHIP TECH
ORNL microscopy uncovers "dancing" silicon atoms in graphene
by Staff Writers
Oak Ridge TN (SPX) Apr 06, 2013


Oak Ridge National Laboratory researchers used electron microscopy to document the 'dancing' motions of silicon atoms, pictured in white, in a graphene sheet.

Jumping silicon atoms are the stars of an atomic scale ballet featured in a new Nature Communications study from the Department of Energy's Oak Ridge National Laboratory.

The ORNL research team documented the atoms' unique behavior by first trapping groups of silicon atoms, known as clusters, in a single-atom-thick sheet of carbon called graphene. The silicon clusters, composed of six atoms, were pinned in place by pores in the graphene sheet, allowing the team to directly image the material with a scanning transmission electron microscope.

The "dancing" movement of the silicon atoms, seen in a video here: http://www.ornl.gov/ornlhome/video/video_files/dancing-silicons-1.mov, was caused by the energy transferred to the material from the electron beam of the team's microscope.

"It's not the first time people have seen clusters of silicon," said coauthor Juan Carlos Idrobo. "The problem is when you put an electron beam on them, you insert energy into the cluster and make the atoms move around. The difference with these results is that the change that we observed was reversible. We were able to see how the silicon cluster changes its structure back and forth by having one of its atoms 'dancing' between two different positions."

Other techniques to study clusters are indirect, says Jaekwang Lee, first author on the ORNL study. "With the conventional instrumentation used to study clusters, it is not yet possible to directly identify the three-dimensional atomic structure of the cluster," Lee said.

The ability to analyze the structure of small clusters is important for scientists because this insight can be used to precisely understand how different atomic configurations control a material's properties. Molecules could then be tailored for specific uses.

"Capturing atomic clusters inside patterned graphene nanopores could potentially lead to practical applications in areas such as electronic and optoelectronic devices, as well as catalysis," Lee said. "It would be a new approach to tuning electronic and optical properties in materials."

The ORNL team confirmed its experimental findings with theoretical calculations, which helped explain how much energy was required for the silicon atom to switch back and forth between different positions.

The study, published as "Direct visualization of reversible dynamics in a Si6 cluster embedded in a graphene pore," is available online here. Coauthors are ORNL's Jaekwang Lee, Wu Zhou, Stephen Pennycook, Juan Carlos Idrobo, and Sokrates Pantelides.

.


Related Links

Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





CHIP TECH
KAIST develops a low-power 60 GHz radio frequency chip for mobile devices
Daejeon, South Korea (SPX) Apr 06, 2013
As the capacity of handheld devices increases to accommodate a greater number of functions, these devices have more memory, larger display screens, and the ability to play higher definition video files. If the users of mobile devices, including smartphones, tablet PCs, and notebooks, want to share or transfer data on one device with that of another device, a great deal of time and effort a ... read more


CHIP TECH
Fukushima fuel cooling system stops again:TEPCO

Environmental policies matter for growing megacities

Finland's Fennovoima in talks with Rosatom over reactor

US drivers talk and text as much as ever

CHIP TECH
China preps civilian use of GPS system

GPS device could stem bike thefts

Apple patent shows pen with GPS, phone

Ground system improves satellite navigation precision

CHIP TECH
Women and men perform the same in math

Scientists identify brain's 'molecular memory switch'

Researchers successfully map fountain of youth

First evidence of Neanderthal/human mix

CHIP TECH
Kenya to toughen poaching sentences to save elephants

Invasive crabs help Cape Cod marshes

Rare river otter spotted near Colo. city

Endangered Vietnam elephant 'skinned, disemboweled'

CHIP TECH
South Africa rolls out new single dose AIDS drug

China boosts bird flu response as cases rise

China steps up response to bird flu cases

No proof China's H7N9 spreading between humans: WHO

CHIP TECH
Tibet disaster shows China resource divide

Chinese activist Chen meets Bush, urges pressure

Tibetan envoy says China can end immolations

China firm says first lady's style not for sale

CHIP TECH
US ships look to net big contraband catches in Pacific

US court convicts Somali pirates in navy ship attack

Ukraine to join NATO anti-piracy mission

16 gunmen killed in Thai military base attack: army

CHIP TECH
Crowdfunding gaining momentum: study

EU mulls tougher stand on tax dodgers

Walker's World: Printing more money

China's Xi says 'ultra-high speed' growth probably over




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement