Medical and Hospital News  
TECH SPACE
Observing hydrogen's effects in metal
by David L. Chandler for MIT News
Boston MA (SPX) Feb 06, 2019

This illustration depicts the main elements of the system the team used: The multicolored slab at center is the metal layer being studied, the pale blue region at left is the electrolyte solution used as a source of hydrogen, the small blue dots are the hydrogen atoms, and the green laser beams at right are probing the process. The large cylinder at right is a probe used to indent the metal to test its mechanical properties.

Hydrogen, the second-tiniest of all atoms, can penetrate right into the crystal structure of a solid metal. That's good news for efforts to store hydrogen fuel safely within the metal itself, but it's bad news for structures such as the pressure vessels in nuclear plants, where hydrogen uptake eventually makes the vessel's metal walls more brittle, which can lead to failure. But this embrittlement process is difficult to observe because hydrogen atoms diffuse very fast, even inside the solid metal.

Now, researchers at MIT have figured out a way around that problem, creating a new technique that allows the observation of a metal surface during hydrogen penetration. Their findings are described in a paper appearing in the International Journal of Hydrogen Energy, by MIT postdoc Jinwoo Kim and Thomas B. King Assistant Professor of Metallurgy C. Cem Tasan.

Hydrogen fuel is considered a potentially major tool for limiting global climate change because it is a high-energy fuel that could eventually be used in cars and planes. However, expensive and heavy high-pressure tanks are needed to contain it. Storing the fuel in the crystal lattice of the metal itself could be cheaper, lighter, and safer - but first the process of how hydrogen enters and leaves the metal must be better understood.

"Hydrogen can diffuse at relatively high rates in the metal, because it's so small," Tasan says. "If you take a metal and put it in a hydrogen-rich environment, it will uptake the hydrogen, and this causes hydrogen embrittlement," he says. That's because the hydrogen atoms tend to segregate in certain parts of the metal crystal lattice, weakening its chemical bonds.

The new way of observing the embrittlement process as it happens may help to reveal how the embrittlement gets triggered, and it may suggest ways of slowing the process - or of avoiding it by designing alloys that are less vulnerable to embrittlement.

The key to the new monitoring process was devising a way of exposing metal surfaces to a hydrogen environment while inside the vacuum chamber of a scanning electron microscope (SEM). Because the SEM requires a vacuum for its operation, hydrogen gas cannot be charged into the metal inside the instrument, and if precharged, the gas diffuses out quickly.

Instead, the researchers used a liquid electrolyte that could be contained in a well-sealed chamber, where it is exposed to the underside of a thin sheet of metal. The top of the metal is exposed to the SEM electron beam, which can then probe the structure of the metal and observe the effects of the hydrogen atoms migrating into it.

The hydrogen from the electrolyte "diffuses all the way through to the top" of the metal, where its effects can be seen, Tasan says. The basic design of this contained system could also be used in other kinds of vacuum-based instruments to detect other properties. "It's a unique setup. As far as we know, the only one in the world that can realize something like this," he says.

In their initial tests of three different metals - two different kinds of stainless steel and a titanium alloy - the researchers have already made some new findings. For example, they observed the formation and growth process of a nanoscale hydride phase in the most commonly used titanium alloy, at room temperature and in real time.

Devising a leakproof system was crucial to making the process work. The electrolyte needed to charge the metal with hydrogen, "is a bit dangerous for the microscope," Tasan says.

"If the sample fails and the electrolyte is released into the microscope chamber," it could penetrate far into every nook and cranny of the device and be difficult to clean out. When the time came to carry out their first experiment in the specialized and expensive equipment, he says, "we were excited, but also really nervous. It was unlikely that failure was going to take place, but there's always that fear."

Research Report: "Microstructural and micro-mechanical characterization during hydrogen charging: An in situ scanning electron microscope study."


Related Links
Massachusetts Institute of Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Supercomputing helps study two-dimensional materials
Garching, Germany (SPX) Feb 04, 2019
Whether it is high-temperature superconductors and improved energy storage to bendable metals and fabrics capable of completely wicking liquids, materials scientists study and understand the physics of interacting atoms in solids to ultimately find ways to improve materials we use in every aspect of daily life. The frontier of materials science research lies not in alchemical trial and error, though; to better understand and improve materials today, researchers must be able to study material prope ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Study reveals wildlife is abundant in Chernobyl

Mexican president declares 'drug war' over

Probe over Brazil dam disaster puts heat on mining company Vale

'Several thousand' more US troops to go to southern border: Pentagon

TECH SPACE
China to launch 10 BeiDou satellites in 2019

Magnetic North's erratic behavior forces update to global navigation system

US Air Force contracts Lockheed Martin to continue GPS ground control supprt

GPS-denied navigation on small unmanned helicopters

TECH SPACE
Ancient skull provides earliest evidence of modern humans in Mongolia

Humans colonized diverse environments in Southeast Asia and Oceania during the Pleistocene

Human mutation rate has slowed recently

All too human

TECH SPACE
Ivory and pangolin scales smuggling bust in Uganda

Thai court dismisses case against suspected wildlife trafficking kingpin

Invasive species could spell trouble on China's new 'Silk Road'

Polish animal activists block govt-ordered boar hunt

TECH SPACE
Hong Kong scientists claim 'broad-spectrum' antiviral breakthrough

Chinese children given expired polio vaccines in latest scare

Danish malaria vaccine passes test in humans

An ancient strain of plague may have led to the decline of Neolithic Europeans

TECH SPACE
Muse: Myanmar's militia-run, billion-dollar gateway to China

Followed, harassed: foreign reporters say China work conditions worsen

US urges release of Chinese lawyer jailed for subversion

China executes man who killed 15 people in car attack

TECH SPACE
TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.