. Medical and Hospital News .




.
CHIP TECH
On And Off Chameleon Magnets Could Revolutionize Computing
by Staff Writers
Buffalo NY (SPX) Jun 01, 2011

Theoretical physicist Igor Zutic has been exploring ways to use magnets to revolutionize computing.

What causes a magnet to be a magnet, and how can we control a magnet's behavior? These are the questions that University at Buffalo researcher Igor Zutic, a theoretical physicist, has been exploring over many years.

He is one of many scientists who believe that magnets could revolutionize computing, forming the basis of high-capacity and low-energy memory, data storage and data transfer devices.

Today, in a commentary in Science, Zutic and fellow UB physicist John Cerne, who studies magnetism experimentally, discuss an exciting advancement: A study by Japanese scientists showing that it is possible to turn a material's magnetism on and off at room temperature.

A material's magnetism is determined by a property all electrons possess: something called "spin." Electrons can have an "up" or "down" spin, and a material is magnetic when most of its electrons possess the same spin. Individual spins are akin to tiny bar magnets, which have north and south poles.

In the Japanese study, which also appears in the current issue of Science, a team led by researchers at Tohoku University added cobalt to titanium dioxide, a nonmagnetic semiconductor, to create a new material that, like a chameleon, can transform from a paramagnet (a nonmagnetic material) to a ferromagnet (a magnetic material) at room temperature.

To achieve change, the researchers applied an electric voltage to the material, exposing the material to extra electrons. As Zutic and Cerne explain in their commentary, these additional electrons - called "carriers" - are mobile and convey information between fixed cobalt ions that causes the spins of the cobalt electrons to align in one direction.

In an interview, Zutic calls the ability to switch a magnet "on" or "off" revolutionary. He explains the promise of magnet- or spin-based computing technology - called "spintronics" - by contrasting it with conventional electronics.

Modern, electronic gadgets record and read data as a blueprint of ones and zeros that are represented, in circuits, by the presence or absence of electrons. Processing information requires moving electrons, which consumes energy and produces heat.

Spintronic gadgets, in contrast, store and process data by exploiting electrons' "up" and "down" spins, which can stand for the ones and zeros devices read. Future energy-saving improvements in data processing could include devices that process information by "flipping" spin instead of shuttling electrons around.

In their Science commentary, Zutic and Cerne write that chameleon magnets could "help us make more versatile transistors and bring us closer to the seamless integration of memory and logic by providing smart hardware that can be dynamically reprogrammed for optimal performance of a specific task."

"Large applied magnetic fields can enforce the spin alignment in semiconductor transistors," they write. "With chameleon magnets, such alignment would be tunable and would require no magnetic field and could revolutionize the role ferromagnets play in technology."

In an interview, Zutic says that applying an electric voltage to a semiconductor injected with cobalt or other magnetic impurities may be just one way of creating a chameleon magnet.

Applying heat or light to such a material could have a similar effect, freeing electrons that can then convey information about spin alignment between ions, he says.

The so-far elusive heat-based chameleon magnets were first proposed by Zutic in 2002. With his colleagues, Andre Petukhov of the South Dakota School of Mines and Technology, and Steven Erwin of the Naval Research Laboratory, he elucidated the behavior of such magnets in a 2007 paper.

The concept of nonmagnetic materials becoming magnetic as they heat up is counterintuitive, Zutic says. Scientists had long assumed that orderly, magnetic materials would lose their neat, spin alignments when heated - just as orderly, crystalline ice melts into disorderly water as temperatures rise.

The carrier electrons, however, are the key. Because heating a material introduces additional carriers that can cause nearby electrons to adopt aligned spins, heating chameleon materials - up to a certain temperature - should actually cause them to become magnetic, Zutic explains.

His research on magnetism is funded by the Department of Energy, Office of Naval Research, Air Force Office of Scientific Research and the National Science Foundation.




Related Links
University at Buffalo
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
Superior sound for telephones and related devices
Munich, Germanay (SPX) Jun 01, 2011
mp3 for phone calls - Considering the poor sound quality of many phone calls, this is a great idea. Videoconference phone calls in particular can be unintentionally awkward because the participants start to speak at the same time due to the time delay in the transmission. The reasons for this are long delay times and the poor quality of today's video calls. Fraunhofer's task was therefore ... read more


CHIP TECH
Japan's PM faces no-confidence motion

Haiti report shines light on rush to inflate death tolls

IAEA says Japan underestimated tsunami threat

Blast at Japan nuclear plant 'likely gas cylinder'

CHIP TECH
EU to launch Galileo satellites this fall

Galileo: Europe prepares for October launch

EU announces launch date for first Galileo satellites

Europe's first EGNOS airport to guide down giant Beluga aircraft

CHIP TECH
When it comes to warm-up less is more for athletes

Scientists trick the brain into Barbie-doll size

New level of genetic diversity in human RNA sequences uncovered

Standing up to fight

CHIP TECH
Dogs in motion

Policing stops cheaters from dominating groups of cooperative bacteria

Reindeer see a weird and wonderful world of ultraviolet light

Biological Circuits for Synthetic Biology

CHIP TECH
Mysterious bacterial outbreak in Europe

Discrimination in China hinders AIDS fight

Weather forecast could predict cholera outbreaks: study

The 30 Years War: AIDS, a tale of tragedy and hope

CHIP TECH
Restive China region orders mining crackdown

China vows to address Mongol grievances

China clamps down on Mongolian protests

US museums walk tightrope after China arrest

CHIP TECH
South Korea jails Somali pirates

US Navy recruits gamers to help in piracy strategy

Danish crew free Somali pirate hostages

Cargo ship, China crew rescued from pirates

CHIP TECH
China manufacturing slows in May

Japan PM moves toward tax rise: media

Moody's may cut Japan debt rating in three months

Signs of recovery in Japan, debt a worry


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement