. Medical and Hospital News .




FROTH AND BUBBLE
Oregon chemists moving forward with tool to detect hydrogen sulfide
by Staff Writers
Eugene OR (SPX) Jun 27, 2013


Doctoral student Leticia A. Montoya and Michael Pluth, professor of chemistry, of the University of Oregon have developed a sensitive probe that detects H2S in biological samples and in the environment. Credit: University of Oregon.

University of Oregon chemists have developed a selective probe that detects hydrogen sulfide (H2S) levels as low as 190 nanomolar (10 parts per billion) in biological samples. They say the technique could serve as a new tool for basic biological research and as an enhanced detection system for H2S in suspected bacterially contaminated water sources.

Hydrogen sulfide, a colorless gas, has long been known for its dangerous toxicity -- and its telltale smell of rotten eggs -- in the environment, but in the last decade the gas has been found to be produced in mammals, including humans, with seemingly important roles in molecular signaling and cardiac health. Detection methods for biological systems are emerging from many laboratories as scientists seek to understand the roles of H2S in general health and different diseases.

Reporting in the Journal of Organic Chemistry -- online in advance of regular print publication -- researchers in the UO lab of Michael D. Pluth, professor of chemistry, describe the development of a colorimetric probe that relies on nucleophilic aromatic substitution to react selectively with H2S to produce a characteristic purple product, allowing for precise H2S measurement.

"This paper describes a new way to selectively detect H2S," said Pluth, who has been pursuing detection methods for the gas under a National Institutes of Health "Pathway to Independence" grant. That early career award began while he was a postdoctoral researcher at the Massachusetts Institute of Technology. "This technique allows you to use instruments to quantify how much H2S has been produced in a sample, and the distinctive color change allows for naked-eye detection."

In biological samples, he said, the approach allows for a precise measurement. In the environment, he added, the technique could be used to determine if potentially harmful H2S-producing bacteria are a contaminant in water sources through the creation of testing kits to detect the gas when levels are above a defined threshold.

The key to the technique, said the paper's lead author, doctoral student Leticia A. Montoya, is the reaction process in which the probe reacts with H2S to produce a distinctly identifiable purple compound. "This method allows you look selectively at hydrogen sulfide versus any other nucleophiles or biological thiols in a system," Montoya said. "It allows you to more easily visualize where H2S is present."

The chemical reaction produced in the experiments, Pluth said, also holds the potential to be applied in a variety of materials, on surfaces and films, with appropriate modifications. The UO has applied for a provisional patent to cover the technology.

The study is the second in which Pluth's lab has reported potential detection probes for H2S. Last year, in the journal Chemical Communications, Montoya and Pluth described their development of two bright fluorescent probes that sort out H2S from among cysteine, glutathione and other reactive sulfur, nitrogen and oxygen species in living cells.

"We're really interested in making sharper tools," Pluth said. "We have the basic science worked out, and now we want to move forward to fine-tune our tools so that we can better use them to answer important scientific questions."

"University of Oregon researchers are helping to foster a more sustainable future by developing powerful new tools and entrepreneurial technologies," said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO graduate school. "This important research from Dr. Pluth's lab may someday alert us to environmental contaminants and could also impact basic science and human health."

Co-authors with Montoya and Pluth on the newly published paper were UO undergraduate students Taylor F. Pearce and Ryan J. Hansen, and Lev N. Zakharov of the UO-based Center for Advanced Materials Characterization in Oregon (CAMCOR). The NIH grant to Pluth (R00 GM092970) came from the National Institute for General Medical Sciences. The research also utilized UO-based nuclear magnetic resonance facilities that are supported by the National Science Foundation (ARRA CHE-0923589).

.


Related Links
University of Oregon
Our Polluted World and Cleaning It Up






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





FROTH AND BUBBLE
Indonesia sorry for haze, sends thousands to fight fires
Jakarta (AFP) June 25, 2013
Indonesian President Susilo Bambang Yudhoyono has apologised to Singapore and Malaysia over fires that have cloaked the countries in thick haze, as thousands of emergency workers were deployed Tuesday to tackle the blazes. Southeast Asia's worst smog crisis for years pushed haze levels in Singapore to a record high last week, with residential buildings and skyscrapers shrouded and daily life ... read more


FROTH AND BUBBLE
India chopper crash kills 20 as flood rescue forges on

India rescue chopper crash death toll rises to 20

WIN-T Increment 1 Enables National Guard to Restore Vital Network Communications Following a Disaster

Australia costs from natural disasters to soar: study

FROTH AND BUBBLE
The next batch of Galileo satellites

Raytheon's latest air traffic management systems go into continuous operation

Raytheon's Satellite Air Navigation System marks 10 years of continuous service in the US

Raytheon unveils Excalibur with dual-mode guidance

FROTH AND BUBBLE
Australia, Indonesia to face off over people smuggling

The evolution of throwing

Outside View: Cosby's inciteful insights on Muslims

New frontier for cybersecurity: your body

FROTH AND BUBBLE
Social animals have more social smarts

Ailanthus tree's status as invasive species offers lesson in human interaction

New flame-headed bird species found in Cambodia capital

Giant panda gives birth to twins in China

FROTH AND BUBBLE
H7N9 bird flu kills about 1/3 hospitalised patients: study

Taiwan reports H6N1 bird flu case

Children suffer as Pakistan battles measles epidemic

Measles epidemic sweeps northern Syria: MSF

FROTH AND BUBBLE
Blind Chinese activist Chen arrives in Taiwan

NYU denies Chen forced out over China tie-up

US lashes China, Russia for human trafficking

China arrests man who planned Tiananmen protest: wife

FROTH AND BUBBLE
Sydney customs officers ran drugs ring, report says

Mexicans turn to social media to report on drug war

New Moldova P.M. Leanca says country remains on pro-EU course

Global cybercrime ring targeted by Microsoft and FBI

FROTH AND BUBBLE
Standard Chartered sees single-digit growth in first half

Greek reshuffle sees Venizelos named foreign minister

China central bank urges lenders to beef up liquidity management

Walker's World: France's crisis looms




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement