Medical and Hospital News
TIME AND SPACE
Particle research gets closer to answering why we're here
University of Cincinnati Professor Alexandre Sousa uses a plastic toy to demonstrate how neutrinos change 'flavor' as they pass through the universe.
Particle research gets closer to answering why we're here
by Michael Miller of UC News
Cincinnati OH (SPX) Dec 06, 2024

Physicists hope to answer fundamental questions about the origins of the universe by learning more about its tiniest particles.

University of Cincinnati Professor Alexandre Sousa helped outline the next 10 years of global research into the behavior of neutrinos, particles so tiny that they pass through virtually everything by the trillions every second at nearly the speed of light.

They are created by nuclear fusion reactions in the sun, radioactive decay in nuclear reactors or the Earth's crust or in particle accelerator labs. As they travel, they can transition between one of three types or "flavors" of neutrinos and back.

But unexpected experimental results made physicists suspect there might be another neutrino flavor, called a sterile neutrino because it appears immune to three of the four known "forces."

"Theoretically, it interacts with gravity, but it has no interaction with the others, weak nuclear force, strong nuclear force or electromagnetic force," Sousa said.

In a new white paper published in the Journal of Physics G, Sousa and his co-authors discuss experimental anomalies in neutrino exploration that have baffled researchers.

Their collective vision is articulated and confronted with science funding scenarios by the Particle Physics Project Prioritization Panel, or P5, whose final report issued in 2023 made direct recommendations to Congress about funding the projects.

"Progress in neutrino physics is expected on several fronts," co-author and UC Professor Jure Zupan said.

Besides the search for sterile neutrinos, Zupan said physicists are looking at several experimental anomalies - disagreements between data and theory - that they will be able to test in the near future with the upcoming experiments.

One question is why the universe has more matter than antimatter if the Big Bang created both in equal measure. Neutrino research could provide the answer, Sousa said.

"It might not make a difference in your daily life, but we're trying to understand why we're here," Sousa said. "Neutrinos seem to hold the key to answering these very deep questions."

Sousa is part of one of the most ambitious neutrino projects called DUNE or the Deep Underground Neutrino Experiment conducted by the Fermi National Accelerator Laboratory. Crews have excavated the former Homestake gold mine 5,000 feet underground to install neutrino detectors. It takes about 10 minutes just for the elevator to reach the detector caverns, Sousa said.

Researchers put detectors deep underground to shield them from cosmic rays and background radiation. This makes it easier to isolate the particles generated in experiments.

"With these two detector modules and the most powerful neutrino beam ever we can do a lot of science," Sousa said. "DUNE coming online will be extremely exciting. It will be the best neutrino experiment ever."

The paper was an ambitious undertaking, featuring more than 170 contributors from 118 universities or institutes and 14 editors, including Sousa.

"It was a very good example of collaboration with a diverse group of scientists. It's not always easy, but it's a pleasure when it comes together," he said.

Meanwhile, Sousa and UC Associate Professor Adam Aurisano are involved in another Fermilab neutrino experiment called NOvA that examines how and why neutrinos change flavor and back. In June, his research group reported on their latest findings, providing the most precise measurements of neutrino mass to date.

Another major project called Hyper-Kamiokande, or Hyper-K, is a neutrino observatory and experiment under construction in Japan.

"That should hold very interesting results, especially when you put them together with DUNE. So the two experiments combined will advance our knowledge immensely," Sousa said. "We should have some answers during the 2030s."

Research Report:White paper on light sterile neutrino searches and related phenomenology

Related Links
University of Cincinnati
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Astronomers uncover key clues to the formation of giant galaxies
London, UK (SPX) Dec 05, 2024
Astronomers are making significant progress in solving the mystery of how the universe's largest galaxies were formed, a puzzle that has intrigued scientists for decades. A recent study by researchers from the University of Southampton, in collaboration with international experts, has pinpointed the birthplaces of massive elliptical galaxies. These findings provide valuable insights into their formation. Unlike our disk-shaped Milky Way, these ancient galaxies resemble bulging footballs, and ... read more

TIME AND SPACE
Natural disasters cause $310bn in economic losses in 2024: Swiss Re

India, Pakistan share climate challenges but not solutions

13 missing after south China railway construction site collapse

Eight dead after 'overloaded' boat capsizes in southwest China

TIME AND SPACE
Deciphering city navigation AI advances GNSS error detection

GPS alternative for drone navigation leverages celestial data

China advances next-generation BeiDou satellite navigation system

Space Systems Command and U.S. Navy achieve major MGUE program milestone

TIME AND SPACE
Mammoths were central to ancient American diets says new study

A fossil discovery sheds light on coexistence of early human ancestors

Iberian Neolithic expertise in archery revealed by exceptional findings in Spain

How humans and dogs began their longstanding bond 12000 years ago

TIME AND SPACE
Survey shows decline in Uganda's lions but hyenas thrive

World's oldest known wild bird is expecting again, aged 74

Breakthrough AI model decodes plant genetic language

Satellite analysis connects climate change to elephant deaths in Botswana

TIME AND SPACE
US lawmakers back Covid Chinese lab leak theory after two-year probe

US lawmakers back Covid Chinese lab leak theory after two-year probe

Chinese film about Covid-19 wins Taiwan's top Golden Horse prizes

Common water disinfectant creates potentially toxic byproduct: study

TIME AND SPACE
Trump names ex-senator Perdue as pick for US ambassador to China

Cathay Pacific pulls in-flight Family Guy episode mentioning Tiananmen

Hong Kong mega development plan to devour villages, wetlands

Nepal PM departs for China visit, breaking with India tradition

TIME AND SPACE
Somali pirates demand ransom for Chinese vessel

Four killed in Colombia airstrike against drug cartel

US lawmakers warn Hong Kong becoming financial crime hub

El Salvador troops target gangs in large-scale operation

TIME AND SPACE
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.