Medical and Hospital News  
TECH SPACE
Physicist accelerates simulations of thin film growth

The University of Toledo's Jacques Amar, Ph.D., leveraged Ohio Supercomputer Center systems to test an accelerated approach to simulating thin film growth. Using two different models (fcc and SOS), Amar compared the regular Kinetic Monte Carlo method (figures A and C) with a first-passage-time approach coupled with the KMC method (figures B and D). Credit: Amar/University of Toledo
by Staff Writers
Toledo OH (SPX) May 19, 2011
A Toledo, Ohio, physicist has implemented a new mathematical approach that accelerates some complex computer calculations used to simulate the formation of micro-thin materials.

Jacques Amar, Ph.D., professor of physics at the University of Toledo (UT), studies the modeling and growth of materials at the atomic level. He uses Ohio Supercomputer Center (OSC) resources and Kinetic Monte Carlo (KMC) methods to simulate the molecular beam epitaxy (MBE) process, where metals are heated until they transition into a gaseous state and then reform as thin films by condensing on a wafer in single-crystal thick layers.

"One of the main advantages of MBE is the ability to control the deposition of thin films and atomic structures on the atomic scale in order to create nanostructures," explained Amar.

Thin films are used in industry to create a variety of products, such as semiconductors, optical coatings, pharmaceuticals and solar cells.

"Ohio's status as a worldwide manufacturing leader has led OSC to focus on the field of advanced materials as one of our areas of primary support," noted Ashok Krishnamurthy, co-interim co-executive director of the center. "As a result, numerous respected physicists, chemists and engineers, such as Dr. Amar, have accessed OSC computation and storage resources to advance their vital materials science research."

Recently, Amar leveraged the center's powerful supercomputers to implement a "first-passage time approach" to speed up KMC simulations of the creation of materials just a few atoms thick.

"The KMC method has been successfully used to carry out simulations of a wide variety of dynamical processes over experimentally relevant time and length scales," Amar noted. "However, in some cases, much of the simulation time can be 'wasted' on rapid, repetitive, low-barrier events."

While a variety of approaches to dealing with the inefficiencies have been suggested, Amar settled on using a first-passage-time (FPT) approach to improve KMC processing speeds. FPT, sometimes also called first-hitting-time, is a statistical model that sets a certain threshold for a process and then estimates certain factors, such as the probability that the process reaches that threshold within a certain amount time or the mean time until which the threshold is reached.

"In this approach, one avoids simulating the numerous diffusive hops of atoms, and instead replaces them with the first-passage time to make a transition from one location to another," Amar said.

In particular, Amar and colleagues from the UT department of Physics and Astronomy targeted two atomic-level events for testing the FPT approach: edge-diffusion and corner rounding. Edge-diffusion involves the "hopping" movement of surface atoms - called adatoms - along the edges of islands, which are formed as the material is growing. Corner rounding involves the hopping of adatoms around island corners, leading to smoother islands.

Amar compared the KMC-FPT and regular KMC simulation approaches using several different models of thin film growth: Cu/Cu(100), fcc(100) and solid-on-solid (SOS). Additionally, he employed two different methods for calculating the FPT for these events: the mean FPT (MFPT), as well as the full FPT distribution.

"Both methods provided "very good agreement" between the FPT-KMC approach and regular KMC simulations," Amar concluded. "In addition, we find that our FPT approach can lead to a significant speed-up, compared to regular KMC simulations."

Amar's FPT-KMC approach accelerated simulations by a factor of approximately 63 to 100 times faster than the corresponding KMC simulations for the fcc(100) model. The SOS model was improved by a factor of 36 to 76 times faster. For the Cu/Cu(100) tests, speed-up factors of 31 to 42 and 22 to 28 times faster were achieved, respectively, for simulations using the full FPT distribution and MFPT calculations.

Amar's research was supported through multiple grants from the National Science Foundation, as well as by a grant of computer time from OSC. A paper co-authored by Amar and UT colleagues Giridhar Nandipati and Yunsic Shim, "First-passage time approach to kinetic Monte Carlo simulations of metal (100) growth," appeared in a recent issue of the journal Physical Review B.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Ohio Supercomputer Center
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


TECH SPACE
Research questions reality of supersolid in Helium-4
Los Alamos NM (SPX) May 19, 2011
The long-held, but unproven idea that helium-4 enters into an exotic phase of matter dubbed a "supersolid" when cooled to extremely low temperatures has been challenged in a new paper published recently in Science. Los Alamos National Laboratory researchers Alexander Balatsky and Matthias Graf joined Cornell University physicist J.C. Seamus Davis and others in describing an alternative exp ... read more







TECH SPACE
US extends relief for undocumented Haitians

Japan TEPCO workers enter reactor building

Doctors defy radiation woes in Japan's Fukushima

New Zealand budget to focus on quake bill: PM

TECH SPACE
Europe's first EGNOS airport to guide down giant Beluga aircraft

'Green' GPS saves fuel, energy

Apple update fixes iPhone tracking "bugs"

Russia, Sweden to boost space cooperation

TECH SPACE
The roots of memory impairment resulting from sleep deprivation

Clubbers can smell a good nightspot

Sporadic mutations identified in children with autism spectrum disorders

Computer program aids patients in end-of-life planning

TECH SPACE
Species loss far less severe than feared: study

World's oldest panda, 34, dies in China

Movement without muscles

New study gives hope for dwindling S.Asia vultures

TECH SPACE
Key West campaign against dengue fever

Destruction of smallpox strains urged

African ministers hail HIV therapy progress

Early drug therapy curbs HIV transmission: study

TECH SPACE
British artists in campaign to free artist Ai Weiwei

Pope urges Chinese bishops to refuse to split from Rome

Beijing brushes aside new Tibetan leader

China's Forbidden City rules out plans for elite club

TECH SPACE
US Navy recruits gamers to help in piracy strategy

Danish crew free Somali pirate hostages

Cargo ship, China crew rescued from pirates

Pirates seize Chinese-crewed cargo ship: Xinhua

TECH SPACE
West vs. East over IMF top post

Japan slides back into recession after quake

Europe, developing world square off over IMF post

Asia urges non-European for IMF top post


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement