. Medical and Hospital News .




TECH SPACE
Physicists crack another piece of the glass puzzle
by Carol Clark
Atlanta, GA (SPX) Oct 17, 2012

illustration only

When it comes to physics, glass lacks transparency. No one has been able to see what's happening at the molecular level as a super-cooled liquid approaches the glass state - until now. Emory University physicists have made a movie of particle motion during this mysterious transition.

Their findings, showing how the rotation of the particles becomes decoupled from their movement through space, are being published in the Proceedings of the National Academy of the Sciences.

"Cooling a glass from a liquid into a highly viscous state fundamentally changes the nature of particle diffusion," says Emory physicist Eric Weeks, whose lab conducted the research. "We have provided the first direct observation of how the particles move and tumble through space during this transition, a key piece to a major puzzle in condensed matter physics."

Weeks specializes in "soft condensed materials," substances that cannot be pinned down on the molecular level as a solid or liquid, including everyday substances such as toothpaste, peanut butter, shaving cream, plastic and glass.

Scientists fully understand the process of water turning to ice. As the temperature cools, the movement of the water molecules slows. At 32 F, the molecules lock into crystal lattices, solidifying into ice. In contrast, the molecules of glasses do not crystallize.The movement of the glass molecules slows as the temperature cools, but they never lock into crystal patterns. Instead, they jumble up and gradually become glassier, or more viscous. No one understands exactly why.

The phenomenon leaves physicists to ponder the molecular question of whether glass is a solid, or merely an extremely slow-moving liquid.

This purely technical physics question has stoked a popular misconception: That the glass in the windowpanes of some centuries-old buildings is thicker at the bottom because the glass flowed downward over time.

"The real reason the bottom is thicker is because they hadn't yet learned how to make perfectly flat panes of glass," Weeks says. "For practical purposes, glass is a solid and it will not flow, even over centuries. But there is a kernel of truth in this urban legend: Glasses are different than other solid materials."

To explore what makes glasses different, the Weeks lab uses mixtures of water and tiny plastic balls, each about the size of the nucleus of a cell. This model system acts like a glass when the particle concentration is increased.

A major drawback to this model system is that actual glass molecules are not spherical, but irregularly shaped.

"When the hot molten liquid that forms a glass cools down, it's not just that the viscosity becomes enormous, growing by a factor of a billion, there is something different about how the molecules are moving," Weeks says. "We wanted to set up an experiment that would allow us to see that movement, but spheres move differently than irregular shapes."

In 2011, however, the physics lab of David Pine, at New York University, developed a way to join clusters of these tiny plastic balls together to form tetrahedrons.

Kazem Edmond, while a graduate student at Emory, added these tetrahedral particles to the glass model system and led the experiments. Using a confocal microscope, he digitally scanned the samples as the viscosity increased, creating up to 100 images per second.

The result was three-dimensional movies that showed the movement and the behavior of the tetrahedrons as the system reached a glassy state.

The movie and data from the experiment provide the first clear picture of the particle dynamics for glass formation. As the liquid grows slightly more viscous, both rotational and directional particle motion slows. The amount of rotation and the directional movements of the particles remain correlated.

"Normally, these two types of motion are highly coupled," Weeks says. "This remains true until the system reaches a viscosity on the verge of being glass. Then the rotation and directional movements become decoupled: The rotation starts slowing down more."

He uses a gridlocked parking lot as an analogy for how the particles are behaving. "You can't turn your car around, because it's not a sphere shape and you would bump into your neighbors. You have to wait until a car in front of you moves, and then you can drive a bit in that direction. This is directional movement, and if you can make a bunch of these, you may eventually be able to turn your car. But turning in a crowded parking lot is still much harder than moving in a straight line."

Previous research has inferred this decoupling of movement by experimenting with actual molecular glasses. The Weeks lab used a simple model system to scale up glassy material so that you can actually watch the decoupling process happening.

"Glass is important in everyday life," Weeks says. "The more we understand its fundamental nature, the more we may be able to improve it and use it in different ways. One reason that smart phones are getting smaller and better, for example, is that stronger and thinner glass is being developed."

Related Links
Emory University
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
New paper reveals fundamental chemistry of plasma/liquid interactions
Notre Dame, IN (SPX) Oct 17, 2012
Though not often considered beyond the plasma television, small-scale microplasmas have great utility in a wide variety of applications. Recently, new developments have begun to capitalize on how these microplasmas interact with liquids in applications ranging from killing bacteria for sterilizing a surface to rapidly synthesizing nanoparticles. An interdisciplinary collaboration between r ... read more


TECH SPACE
Tiny travelers from deep space could assist in healing Fukushima's nuclear scar

French broadcaster apologises to Japan over Fukushima gag

Planning can cut costs of disasters: World Bank

12 Chinese workers killed, 24 hurt in dormitory blaze

TECH SPACE
Testing of Galileo satellite navigation system can begin

Two more satellites for the Galileo system

Deployment of Europe's Galileo constellation continues

Soyuz orbits two Galileo satellites for Arianespace

TECH SPACE
Nasty noises: Why do we recoil at unpleasant sounds

UN report warns of possible rise in child marriages

Chimps said attacking humans in Africa

New human neurons from adult cells right there in the brain

TECH SPACE
Penn Researchers Find New Way to Mimic the Color and Texture of Butterfly Wings

Scientists discover that shape matters in DNA nanoparticle therapy

Madagascar lemurs top endangered primates list

Taiwan butterfly pioneer laments threat to species

TECH SPACE
New HIV prevention technology shows promise

Ebola antibody treatment, produced in plants, protects monkeys from lethal disease

Concern as HIV cases rise 8% in Australia

Cholera 'under control' in Iraqi Kurdistan: minister

TECH SPACE
Spain raids Chinese mob, arrests 80

Former Chinese official sheds light on dark side of power

Chinese dissident author savages Beijing at German awards

Beverage tycoon tops Forbes' China rich list

TECH SPACE
Dutch navy detains alleged Somali pirates after attack

Colombia hopes FARC deal will bring peace

Mexico captures Zetas cartel capo 'El Taliban': navy

Indian state in grip of a drug epidemic

TECH SPACE
Argentina blasts rating agencies

Japan PM orders more economic stimulus

China's Wen: economy starting to stabilise

Walker's World: Why the IMF was wrong


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement