. Medical and Hospital News .




PHYSICS NEWS
Physicists discover key to ultra-stable bearings
by Ceri Perkins for Institute of Physics
London, UK (SPX) Feb 21, 2013


Each disc turns in the opposite way to any other disc that it is in contact with, and the tangential velocity - the distance traced by a point on the edge of a disc in a given time - is equal for all the discs, regardless of their size. This means that at each contact point the discs roll together without slipping and the whole system is in a stable, synchronized state.

Networks of rotating bearings can better recover from perturbations to their harmonious motion if the masses of the individual discs are proportional to their radii - this is the finding of a team of physicists based in Switzerland and Brazil.

Although surprising, the result hints at how to construct more robust mechanical bearings, as well as offering fresh insight into the synchronization of complex oscillating systems such as electrical networks and the Internet.

Bearings are the small workhorses at the heart of many mechanical devices used today. The secret to their success is that they reduce the friction between two surfaces that need to slide past one another by offering them a chance to roll.

Think of the Ancient Egyptians transporting gigantic slabs of rock on beds of rolling logs - would the pyramids ever have been realized if the rocks had been shunted along the ground unaided? A more sophisticated example is the wheel on a rollerblade.

Its internal casing houses a ring of tiny ball-bearings that allows the outer part to spin smoothly against the inner part, affording the wearer speed for very little effort.

Scale-free synchronization
Hans Herrmann, of the Swiss Federal Institute of Technology (ETH) and colleagues investigated a particular type of bearing known as a 2D space-filling bearing. This component consists of a hierarchical distribution of successively smaller rotating 2D discs nestled into the spaces between larger ones, also known as a "scale-free distribution".

Each disc turns in the opposite way to any other disc that it is in contact with, and the tangential velocity - the distance traced by a point on the edge of a disc in a given time - is equal for all the discs, regardless of their size. This means that at each contact point the discs roll together without slipping and the whole system is in a stable, synchronized state.

"The synchronization of a regular grid of oscillators is an old problem that has been solved, but rather new is synchronizing oscillators that are connected in a very complex network like ours," explains Herrmann.

A number of recent papers deal with the theoretical conditions necessary for such grand-scale oscillators to synchronize but, says Herrmann, "What we did was to create, for the first time, a physical example that you could realize mechanically."

Mechanical realization
Herrmann's colleagues used a mathematical model of the space-filling bearing to explore the forces on the discs, toying with each disc's inertia by placing holes of different sizes at their centres to hollow them out and rob them of mass.

A disc's mass is normally proportional to the square of its radius, but the researchers found that they could markedly enhance the synchronizability of the whole system by making the holes large enough that the discs' masses were always simply proportional to their radii. A system with higher synchronizability will, if perturbed, return more quickly to a balanced, no-slip rotating state.

By obeying the one-to-one relation, their system showed it could quickly overcome perturbations and absorb changes. "This is a non-trivial issue that is surprising about the whole work," says Herrmann, "particularly because the effect is so strong; if you change the relation even slightly, the signal is very strongly diminished."

In addition, explains co-author Nuno Araujo, also of ETH, the team managed to confirm a key theoretical prediction about scale-free networks - that the most stable synchronization states occur when the interaction strength is inversely proportional to the number of interacting partners of an individual oscillator.

"In such networks, synchronizability is improved when there is a coupling strength that is related to the number of contacts. In our network, the large discs obviously have more contacts, but they also have more inertia and this [tempers] the strength of the interaction between the discs," says Araujo.

"Synchronization in real networks is a timely line of research," says Adilson Motter, a physicist at Northwestern University who was not involved with the study.

"Previous network-synchronization studies have focused mostly on random networks...the specific optimization results [in this study] are also interesting, as they deviate significantly from the results my collaborators and I have previously established for random networks."

Applications and analogies
"Any mechanical bearing [with spheres/wheels of different sizes] could benefit from this result in principle," explains Herrmann. Since greater synchronizability would render a bearing both more resistant to failure from perturbation and more durable (reduced time out-of-sync means reduced wearing of parts), finessing the famously accurate and reliable mechanical Swiss watch would be one possible option.

For the more philosophically inclined, by showing that bearings are physical realizations of complex networks of oscillators, the team has constructed something akin to a metaphor for the Internet. "Only in our case it is rolling. The Internet is not rolling anywhere," says Herrmann. "So I would say that our results have analogies in the world of the Internet."

The research is published in Physical Review Letters.

Ceri Perkins is a science writer based in the US

.


Related Links
Institute of Physics
The Physics of Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





PHYSICS NEWS
Bochum physicist calculates field strengths in the early universe
Bochum, Germany (SPX) Jan 04, 2013
Magnets have practically become everyday objects. Earlier on, however, the universe consisted only of nonmagnetic elements and particles. Just how the magnetic forces came into existence has been researched by Prof. Dr. Reinhard Schlickeiser at the Institute of Theoretical Physics of the Ruhr-Universitat Bochum. In the journal Physical Review Letters, he describes a new mechanism for the magneti ... read more


PHYSICS NEWS
British PM sparks concern with aid budget proposals

Swiss Re posts 61% profit rise in 2012

Four guilty of manslaughter in Italy quake trial

Warning of emergency alert system hacks

PHYSICS NEWS
Telit Offers COMBO 2G Chip For Multi Satellite Positioning Receiver

Boeing Awarded USAF Contract to Continue GPS Modernization

A system that improves the precision of GPS in cities by 90 percent

System improves GPS in city locations

PHYSICS NEWS
Zuckerberg, Brin join forces to extend life

Thick hair mutation emerged 30,000 years ago in humans

Tiny mutation had big evolutionary impact

Bilingual babies get good at grammar

PHYSICS NEWS
Activists want ivory sanctions on Thailand, others

2012 another deadly year for elephants in Africa: CITES

X-ray laser sees photosynthesis in action

Python hunt in Everglades nets just 68: organizers

PHYSICS NEWS
China reports year's second fatal case of bird flu

Text messages help cholera fight in Mozambique

Humans and chimps share genetic strategy in battle against pathogens

Cold resistance runs in genes

PHYSICS NEWS
Chinese villagers told to flatten tombs: reports

Tibetan teens in rare double immolation: reports

US slams 'horrific' toll of Tibet self-immolations

Tibetan monk's burning marks 100th immolation bid

PHYSICS NEWS
Ukraine to join NATO anti-piracy mission

16 gunmen killed in Thai military base attack: army

Japan police arrest mobster in Fukushima clean-up

Mexico scrambles to stem violence near capital

PHYSICS NEWS
London elbows out HK for pricey offices, as Rio rises

Argentine inflation up, presaging hardship

China holiday retail sales jump 15%: government

EU financial transaction tax divides union




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement