Medical and Hospital News  
CARBON WORLDS
Physicists find misaligned carbon sheets yield unparalleled properties
by Staff Writers
Dallas TX (SPX) Aug 03, 2020

Graphene is a single layer of carbon atoms arranged in a flat honeycomb pattern, where each hexagon is formed by six carbon atoms at its vertices. University of Texas at Dallas physicists are studying the electrical properties that emerge when two layers of graphene are stacked.

A material composed of two one-atom-thick layers of carbon has grabbed the attention of physicists worldwide for its intriguing - and potentially exploitable - conductive properties.

Dr. Fan Zhang, assistant professor of physics in the School of Natural Sciences and Mathematics at The University of Texas at Dallas, and physics doctoral student Qiyue Wang published an article in June with Dr. Fengnian Xia's group at Yale University in Nature Photonics that describes how the ability of twisted bilayer graphene to conduct electrical current changes in response to mid-infrared light.

From One to Two Layers
Graphene is a single layer of carbon atoms arranged in a flat honeycomb pattern, where each hexagon is formed by six carbon atoms at its vertices. Since graphene's first isolation in 2004, its unique properties have been intensely studied by scientists for potential use in advanced computers, materials and devices.

If two sheets of graphene are stacked on top of one another, and one layer is rotated so that the layers are slightly out of alignment, the resulting physical configuration, called twisted bilayer graphene, yields electronic properties that differ significantly from those exhibited by a single layer alone or by two aligned layers.

"Graphene has been of interest for about 15 years," Zhang said. "A single layer is interesting to study, but if we have two layers, their interaction should render much richer and more interesting physics. This is why we want to study bilayer graphene systems."

A New Field Emerges
When the graphene layers are misaligned, a new periodic design in the mesh emerges, called a moire pattern. The moire pattern is also a hexagon, but it can be made up of more than 10,000 carbon atoms.

"The angle at which the two layers of graphene are misaligned - the twist angle - is critically important to the material's electronic properties," Wang said. "The smaller the twist angle, the larger the moire periodicity."

The unusual effects of specific twist angles on electron behavior were first proposed in a 2011 article by Dr. Allan MacDonald, professor of physics at UT Austin, and Dr. Rafi Bistritzer. Zhang witnessed the birth of this field as a doctoral student in MacDonald's group.

"At that time, others really paid no attention to the theory, but now it has become arguably the hottest topic in physics," Zhang said.

In that 2011 research MacDonald and Bistritzer predicted that electrons' kinetic energy can vanish in a graphene bilayer misaligned by the so-called "magic angle" of 1.1 degrees. In 2018, researchers at the Massachusetts Institute of Technology proved this theory, finding that offsetting two graphene layers by 1.1 degrees produced a two-dimensional superconductor, a material that conducts electrical current with no resistance and no energy loss.

In a 2019 article in Science Advances, Zhang and Wang, together with Dr. Jeanie Lau's group at The Ohio State University, showed that when offset by 0.93 degrees, twisted bilayer graphene exhibits both superconducting and insulating states, thereby widening the magic angle significantly.

"In our previous work, we saw superconductivity as well as insulation. That's what's making the study of twisted bilayer graphene such a hot field - superconductivity. The fact that you can manipulate pure carbon to superconduct is amazing and unprecedented," Wang said.

New UT Dallas Findings
In his most recent research in Nature Photonics, Zhang and his collaborators at Yale investigated whether and how twisted bilayer graphene interacts with mid-infrared light, which humans can't see but can detect as heat. "Interactions between light and matter are useful in many devices - for example, converting sunlight into electrical power," Wang said. "Almost every object emits infrared light, including people, and this light can be detected with devices."

Zhang is a theoretical physicist, so he and Wang set out to determine how mid-infrared light might affect the conductance of electrons in twisted bilayer graphene. Their work involved calculating the light absorption based on the moire pattern's band structure, a concept that determines how electrons move in a material quantum mechanically.

"There are standard ways to calculate the band structure and light absorption in a regular crystal, but this is an artificial crystal, so we had to come up with a new method," Wang said. Using resources of the Texas Advanced Computing Center, a supercomputer facility on the UT Austin campus, Wang calculated the band structure and showed how the material absorbs light.

The Yale group fabricated devices and ran experiments showing that the mid-infrared photoresponse - the increase in conductance due to the light shining - was unusually strong and largest at the twist angle of 1.8 degrees. The strong photoresponse vanished for a twist angle less than 0.5 degrees.

"Our theoretical results not only matched well with the experimental findings, but also pointed to a mechanism that is fundamentally connected to the period of moire pattern, which itself is connected to the twist angle between the two graphene layers," Zhang said.

Next Step
"The twist angle is clearly very important in determining the properties of twisted bilayer graphene," Zhang added. "The question arises: Can we apply this to tune other two-dimensional materials to get unprecedented features? Also, can we combine the photoresponse and the superconductivity in twisted bilayer graphene? For example, can shining a light induce or somehow modulate superconductivity? That will be very interesting to study."

"This new breakthrough will potentially enable a new class of infrared detectors based on graphene with high sensitivity," said Dr. Joe Qiu, program manager for solid-state electronics and electromagnetics at the U.S. Army Research Office (ARO), an element of the U.S. Army Combat Capabilities Development Command's Army Research Laboratory. "These new detectors will potentially impact applications such as night vision, which is of critical importance for the U.S. Army."

Research paper


Related Links
University Of Texas At Dallas
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
White dwarfs reveal new insights into the origin of carbon in the universe
Santa Cruz CA (SPX) Jul 07, 2020
A new analysis of white dwarf stars supports their role as a key source of carbon, an element crucial to all life, in the Milky Way and other galaxies. Approximately 90 percent of all stars end their lives as white dwarfs, very dense stellar remnants that gradually cool and dim over billions of years. With their final few breaths before they collapse, however, these stars leave an important legacy, spreading their ashes into the surrounding space through stellar winds enriched with chemical elemen ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Scientists attempt to model spread of social unrest, riots

Snapchat grudges, COVID-19 pressures drive US shooting epidemic

Myanmar army sacks officers over landslide tragedy

Iran says damage at nuclear site 'significant'

CARBON WORLDS
Honeywell expands navigation options for precise data in areas without GPS

Garmin says outage continues but user data 'not affected'

BeiDou adopted in unmanned farm machines in Xinjiang

SMC contracts for Joint Modernized GPS Handheld Device across multiple suppliers

CARBON WORLDS
World population likely to shrink after mid-century

Neanderthals may have had a weak pain threshold

Spider monkey groups use collective computation to forage for food

Study reveals differences between nobles, commoners in Middle Ages

CARBON WORLDS
Thailand tiger sightings hailed as conservation win

International team of scientists to preserve Lake Titicaca giant frog

Sumatran tiger cub born in Polish zoo

Vietnam suspends wildlife trade as pandemic prods action

CARBON WORLDS
China virus city in transport shutdown as WHO delays decision

Europe boosts China flight checks as killer virus spreads

Global health emergencies: A rarely used call to action

Hong Kong orders mandatory mask wearing to combat new virus wave

CARBON WORLDS
Former Chinese top banker pleads guilty to massive graft

Singapore PM hopes businesses stay in Hong Kong

University sacks Hong Kong protest leader loathed by China

New Zealand suspends extradition treaty with Hong Kong

CARBON WORLDS
'Virtual kidnappings' warning for Chinese students in Australia

Mexico navy implicated in disappearance of 27 people

China says five sailors kidnapped off Nigeria

Sweden extradites Chinese 'multi-million-dollar money launderer' to US

CARBON WORLDS








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.