. Medical and Hospital News .




SOLAR DAILY
Physicists propose 'wireless' solar cells
by Tim Wogan for Institute of Physics
London, UK (SPX) Feb 22, 2013


Multilayer lanthanum vanadate and strontium titanate structure.

A new type of solar cell that relies on a surprising property of certain insulators has been proposed by physicists in Austria, the US and Germany. The design relies on the discovery a decade ago that the interface between two insulating oxides can become metallic, which could eliminate the need for metal wires in solar cells. If the cost of producing layered structures of the oxides can be reduced, the research could lead to a new type of highly efficient photovoltaic cell.

In 2004 Harold Hwang and Akira Ohtomo made the remarkable discovery that when a layer of the insulator lanthanum titanate was grown on the insulator strontium titanate, a 2D electron gas forms at the interface causing it to become metallic. The phenomenon is caused by the accumulation of charge at the edge of a polar oxide as it meets a non-polar oxide. It has since been seen in other oxide interfaces and has been investigated by multiple research groups trying to develop new and improved electronic devices.

Conducting interfaces
Now, an independent team of researchers at the Vienna University of Technology, the Oak Ridge National Laboratory and the University of Wurzburg has done calculations that suggest that the effect could be used to create a new type of solar cell - one in which the generated current is extracted via conducting interfaces rather than with metal wires.

Solar cells rely on the photoelectric effect, where a photon striking an electron in the valence band of a material promotes it to the conduction band, leaving a positively charged "hole". The electrons and holes must be removed from the photovoltaic material without recombining or dissipating their energy into lattice vibrations.

Polar oxides such as lanthanum titanate contain an internal electric field and positively and negatively charged planes of atoms. Oak Ridge's Satoshi Okamoto and colleagues reasoned that this polarization would help separate the electrons and the holes before they could recombine. If such a polar oxide is paired with the appropriate non-polar oxide, the interfaces would be metallic. As a result, electrons and holes could be extracted from either side of the device without covering the surface with wires, which block some of the light from reaching the active region of the cell.

Maximizing absorption
The researchers first needed a polar oxide that would absorb as much solar energy as possible. A material's band gap is the energy difference between its valence and conduction bands. Photons with energies less than the band gap cannot create electron-hole pairs, whereas photons with energies greater than the band gap will create pairs. In the latter case, however, energy in excess of the band gap is lost as heat. As a result, the band gap should therefore be low enough to absorb plenty of solar photons, but high enough to extract as much energy as possible from the photons absorbed.

The researchers settled on lanthanum vanadate, which has an band gap of 1.1 eV - visible light is in the 1.5-3.5 eV energy range. They used density functional theory to model the behaviour of a solar cell constructed of a layer of lanthanum vanadate grown on a strontium titanate substrate. While they were unable to make precise predictions about device efficiency based on their results, the researchers suggest that the inherent advantages of the design deserve further investigation.

Capturing higher-energy photons
The researchers also suggest that the efficiency of the solar cell could be increased further by incorporating a layer of lanthanum ferrate on top of the lanthanum vanadate. Lanthanum ferrate has a band gap of 2.2 eV, so higher-energy photons could be captured in this layer, leaving the lower-energy photons to be captured by the lanthanum vanadate. A project to produce prototype solar cells is under way at the University of Wurzburg.

Optimistic but cautious
Okamoto is cautiously optimistic about whether the solar cells could ever be efficient enough to make them economically viable. "They could become competitive, but it will take quite a long time," he says. "Currently, only a limited number of facilities can grow this kind of heterostructure using very advanced thin-film growth methods. I hope that when people fully understand how best to grow these solar cells the cost will come down."

Neil Greenham, who works on novel solar cells at the University of Cambridge, describes the research, published in Physical Review Letters, as "an interesting theory paper" but emphasizes it will be impossible to assess whether or not the solar cells will have any practical advantages over current designs until working prototypes are produced.

He also questions the assertion that simply incorporating two epitaxial layers could allow electron-hole pairs to be collected with two different energies, suggesting that, unless the electron-hole pairs could be extracted separately, any extra energy captured by an electron in lanthanum ferrate would be dumped into the lattice as it passed through the lanthanum vanadate.

Okamoto responded that photogenerated electrons and holes should cross a thin film of lanthanum vanadate in "a few femtoseconds", which is less than the time it would take to lose energy to the lattice.

.


Related Links
Institute of Physics
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





SOLAR DAILY
Azure Power Commissions The Largest Solar PV Project Under JNNSM
New Delhi, India (SPX) Feb 22, 2013
Azure Power has commissioned its 35MW plant in village Kathauti, Nagaur, Rajasthan with effect from 12th February 2013, weeks before the deadline. The plant is an expansion of Azure Power's existing 5 MW Nagaur PV plant to 40MW, making it the largest solar power plant to be commissioned at a single location under the National Solar Mission. The project demonstrates Azure Power's cost leade ... read more


SOLAR DAILY
British PM sparks concern with aid budget proposals

Swiss Re posts 61% profit rise in 2012

Four guilty of manslaughter in Italy quake trial

Warning of emergency alert system hacks

SOLAR DAILY
Telit Offers COMBO 2G Chip For Multi Satellite Positioning Receiver

Boeing Awarded USAF Contract to Continue GPS Modernization

A system that improves the precision of GPS in cities by 90 percent

System improves GPS in city locations

SOLAR DAILY
Zuckerberg, Brin join forces to extend life

Thick hair mutation emerged 30,000 years ago in humans

Tiny mutation had big evolutionary impact

Bilingual babies get good at grammar

SOLAR DAILY
Activists want ivory sanctions on Thailand, others

2012 another deadly year for elephants in Africa: CITES

X-ray laser sees photosynthesis in action

Python hunt in Everglades nets just 68: organizers

SOLAR DAILY
China reports year's second fatal case of bird flu

Text messages help cholera fight in Mozambique

Humans and chimps share genetic strategy in battle against pathogens

Cold resistance runs in genes

SOLAR DAILY
Chinese villagers told to flatten tombs: reports

Tibetan teens in rare double immolation: reports

US slams 'horrific' toll of Tibet self-immolations

Tibetan monk's burning marks 100th immolation bid

SOLAR DAILY
Ukraine to join NATO anti-piracy mission

16 gunmen killed in Thai military base attack: army

Japan police arrest mobster in Fukushima clean-up

Mexico scrambles to stem violence near capital

SOLAR DAILY
London elbows out HK for pricey offices, as Rio rises

Argentine inflation up, presaging hardship

China holiday retail sales jump 15%: government

EU financial transaction tax divides union




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement