Medical and Hospital News  
CHIP TECH
Physicists show how frequencies can easily be multiplied without special circuitry
by Staff Writers
Halle, Germany (SPX) Mar 11, 2022

Georg Woltersdorf and Chris Korner in the lab.

A new discovery by physicists at Martin Luther University Halle-Wittenberg (MLU) could make certain components in computers and smartphones obsolete. The team has succeeded in directly converting frequencies to higher ranges in a common magnetic material without the need for additional components. Frequency multiplication is a fundamental process in modern electronics. The team reports on its research in the latest issue of Science.

Digital technologies and devices are already responsible for about ten percent of global electricity consumption, and the trend is rising sharply. "It is therefore necessary to develop more efficient components for information processing," says Professor Georg Woltersdorf, a physicist from MLU.

Non-linear electronic circuits are typically used to generate the high-frequency gigahertz signals needed to operate today's devices. The team at MLU has now found a way to do this within a magnetic material without the electronic components that are usually used for this.

Instead, the magnetization is excited by a low-frequency megahertz source. Using the newly discovered effect, the source generates several frequency components, each of which is a multiple of the excitation frequency. These cover a range of six octaves and reach up to several gigahertz. "This is like hitting the lowest note on a piano while also hearing the corresponding harmonic tones of the higher octaves," explains Woltersdorf.

The surprising effect of frequency multiplication is explained by synchronized switching of the dynamic magnetization on a micron scale. "Different areas do not switch at the same time. Instead, they are triggered by adjacent areas just like in a falling row of dominoes," explains first author Chris Korner from the Institute of Physics at MLU.

The discovery could also help make digital technologies more energy efficient in the future. It is also important for new applications. Today's microelectronics use electron charges as information carriers. A major disadvantage of this method is that the electric charge transport releases heat and therefore requires a lot of energy.

Spin electronics could provide a promising solution. In addition to using the electron's charge, it also uses its magnetic moment, or so-called spin. Its properties open the possibility to significantly improve the energy efficiency. The newly discovered effect could enable space-saving and efficient frequency sources for spin electronics in the gigahertz range.

Research Report: "Frequency multiplication by collective nanoscale spin wave dynamics"


Related Links
Martin-Luther-University Halle-Wittenberg
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Magnetic excitations could provide information transfer without heat loss
Munich, Germany (SPX) Mar 07, 2022
Just as electrons flow through an electrical conductor, magnetic excitations can travel through certain materials. Such excitations, known in physics as "magnons" in analogy to the electron, could transport information much more easily than electrical conductors. An international research team has now made an important discovery on the road to such components, which could be highly energy-efficient and considerably smaller. At present the transport and control of electrical charges forms the basis ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Ukraine's Chernobyl loses power again: operator

Radioactive fuel, contaminated water: the Fukushima clean-up

Power restored at Ukraine's Chernobyl: IAEA

IAEA says loses contact with Chernobyl nuclear data systems

CHIP TECH
China's BeiDou enters new phase of stable services, rapid development

Galileo 2nd generation satellites ready to navigate into the future

Northrop Grumman equips US Marines with Next Generation Handheld Targeting Device

The drone has landed

CHIP TECH
Grains hints at origin of 7,000-year-old Swiss pile dwellings

Early humans kept old stone tools to preserve memory of their ancestors

Archaeologists discover innovative 40,000-year-old culture in China

University of Oxford researchers create largest ever human family tree

CHIP TECH
Endangered bat not seen in four decades found in Rwanda

Darwinian theory of gradual process explained in new research

100 new species in Myanmar reveal its 'biological riches'

12 big cats evacuated from Ukraine arrive in Poland

CHIP TECH
Chinese cities and factories lock down as outbreak spreads

Chinese cities and factories lock down as outbreak spreads

Mandatory Hong Kong Covid testing 'not a priority': city leader

China's zero-Covid policy under pressure as cases rise

CHIP TECH
'Graft probes and power games': Xi's corruption drive turns to cash trail

CIA boss: China 'unsettled' by Russia's war in Ukraine

Virus chaos pushes more expats to join Hong Kong exodus

China's annual parliament opens in key year for Xi

CHIP TECH
Iran, Russia, China start war games to counter 'maritime piracy'

Denmark shelves prosecution of Africa piracy suspects

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.