Medical and Hospital News  
ENERGY TECH
Physicists uncover mechanism that stabilizes plasma within tokamaks
by Staff Writers
Washington DC (SPX) Nov 11, 2015


A cross-section of the virtual plasma showing where the magnetic field lines intersect the plane. The central section has field lines that rotate exactly once. Image courtesy Stephen Jardin. For a larger version of this image please go here.

A team of physicists led by Stephen Jardin of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has discovered a mechanism that prevents the electrical current flowing through fusion plasma from repeatedly peaking and crashing. This behavior is known as a "sawtooth cycle" and can cause instabilities within the plasma's core. The results have been accepted for publication in Physical Review Letters. The research was supported by the DOE Office of Science (Office of Fusion Energy Sciences).

The team, which included scientists from General Atomics and the Max Planck Institute for Plasma Physics, performed calculations on the Edison computer at the National Energy Research Scientific Computing Center, a division of the Lawrence Berkeley National Laboratory.

Using M3D-C1, a program they developed that creates three-dimensional simulations of fusion plasmas, they found that under certain conditions a helix-shaped whirlpool of plasma forms around the center of the tokamak. The swirling plasma acts like a dynamo - a moving fluid that creates electric and magnetic fields. Together these fields prevent the current flowing through plasma from peaking and crashing.

The researchers found two specific conditions under which the plasma behaves like a dynamo. First, the magnetic lines that circle the plasma must rotate exactly once, both the long way and the short way around the doughnut-shaped configuration, so an electron or ion following a magnetic field line would end up exactly where it began (Figure 1).

Second, the pressure in the center of the plasma must be significantly greater than at the edge, creating a gradient between the two sections. This gradient combines with the rotating magnetic field lines to create spinning rolls of plasma that swirl around the tokamak and gives rise to the dynamo that maintains equilibrium and produces stability.

This dynamo behavior arises only during certain conditions. Both the electrical current running through the plasma and the pressure that the plasma's electrons and ions exert on their neighbors must be in a certain range that is "not too large and not too small," said Jardin.

In addition, the speed at which the conditions for the fusion reaction are established must be "not too fast and not too slow."

Jardin stressed that once a range of conditions like pressure and current are set, the dynamo phenomenon occurs all by itself. "We don't have to do anything else from the outside," he noted. .

"It's something like when you drain your bathtub and a whirlpool forms over the drain by itself. But because a plasma is more complicated than water, the whirlpool that forms in the tokamak needs to also generate the voltage to sustain itself."

During the simulations the scientists were able to virtually add new diagnostics, or probes, to the computer code. "These diagnostics were able to measure the helical velocity fields, electric potential, and magnetic fields to clarify how the dynamo forms and persists," said Jardin.

The persistence produces the "voltage in the center of the discharge that keeps the plasma current from peaking."

Physicists have indirectly observed what they believe to be the dynamo behavior on the DIII-D National Fusion Facility that General Atomics operates for the Department of Energy in San Diego and the ASDEX Upgrade in Garching, Germany.

They hope to learn to create these conditions on demand, especially in ITER, the huge multinational fusion machine being constructed in France to demonstrate the practicality of fusion power.

"Now that we understand it better, we think that computer simulations will show us under what conditions this will occur in ITER," said Jardin. "That will be the focus of our research in the near future."

Learning how to create these conditions has important implications for ITER, which will produce helium nuclei that could amplify the sawtooth disruptions. If large enough, these disruptions could cause other instabilities that could halt the fusion process. Preventing the cycle from starting would therefore be highly beneficial for the ITER experiment.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Physical Society
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Explaining a mysterious barrier to fusion known as the 'density limit'
Washington DC (SPX) Nov 11, 2015
For more than 50 years physicists have puzzled over a daunting mystery: Why do tokamak plasmas spiral apart when reaching a certain maximum density and halt fusion reactions? This "density limit" serves as a barrier that prevents tokamaks from operating at peak efficiency, and understanding what sets this maximum density would speed the development of fusion as a safe, clean and abundant energy ... read more


ENERGY TECH
McMurdo extends search and rescue ecosystem with new comsat solution

McMurdo completes MEOSAR satellite ground station in New Zealand

Italy's painstaking bid to identify shipwrecked migrants

Painfully slow rebuild after Philippine super typhoon

ENERGY TECH
Orbital ATK products enable improved global positioning on Earth

Galileo pair preparing for December launch

GPS IIF satellite successfully launched from Cape Canaveral

U.S. Air Force prepares to launch next GPS IIF satellite

ENERGY TECH
Early proto-porcelain from China likely made from local materials

Environment and climate helped shape varied evolution of human languages

Divisive religious beliefs humanity's biggest challenge: Grayling

Predicting the human genome using evolution

ENERGY TECH
Indonesia orangutans attacked by villagers after fleeing fires

Tanzanian police arrest four Chinese with 11 rhino horns

Ice-age lesson: Large mammals need room to roam

Ancient long-extinct amphibians discovered in Brazil

ENERGY TECH
Monkeys in Asia harbor virus from humans, other species

Over 230,000 vaccinated in Iraq anti-cholera campaign

What ever happened to West Nile virus

Ebola: The epidemic's timeline

ENERGY TECH
Beijing's Communist Party deputy chief probed for graft

China two-child policy to add 3 million babies a year: officials

China artist comes out... as French

The loneliness of China's long-serving enforcers

ENERGY TECH
Villagers recall fear as troops fired in 'Chapo' raid

Chinese 'thief' swallowed diamond, tried to flee Thailand

Army's role questioned in missing Mexican students case

ENERGY TECH
China industrial output up 5.6% on year: govt

Weak China inflation stokes fears over slowing demand

Weak China inflation stokes fears over slowing demand

China gives currency largest boost in a decade









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.