Medical and Hospital News  
TIME AND SPACE
Physicists use numerical 'tweezers' to study nuclear interactions
by Staff Writers
Raleigh NC (SPX) Jun 12, 2017


Numerical tweezers used to measure the effective potential between two quantum states.

Researchers from North Carolina State University and the Ruhr-Universitat Bochum have developed numerical "tweezers" that can pin a nucleus in place, enabling them to study how interactions between protons and neutrons produce forces between nuclei. They found that the strength of local interactions determines whether or not these nuclei attract or repel each other, shedding light on the parameters that control attraction or repulsion in quantum bound states.

"Ultimately we want to understand how nuclear forces determine nuclear structure by studying how nuclei attract or repel one another," says Dean Lee, professor of physics at NC State and corresponding author of a paper describing the work. "So we needed a way to hold particles in place and move them around relative to one another in order to measure attraction or repulsion."

Lee, along with Ruhr-Universitat Bochum colleagues Evgeny Epelbaum and Hermann Krebs and graduate student Alexander Rokash, utilized a numerical lattice with attractive potentials in order to isolate the particles they wanted to study. The attractive potentials created a way for a particle to get "stuck" in one place - like a hole in the ground that a marble could roll into. These were the numerical tweezers.

The team began simulations with two single particles held in different positions, then with particle pairs. They looked at two types of interactions between the groups of particles: local interactions, where the particles' positions relative to one another don't change; and non-local interactions, where the positions do change.

"We found that the local interactions had a much bigger effect on determining whether nuclei would stick together, or become bound," Lee says. "Specifically, the strength and range of the local interactions determined whether or not the nuclei would bind to each other. In non-local interactions, on the other hand, the nuclei sometimes repelled each other.

"We're interested in finding out why nuclei bind together to form new elements," Lee continues. "Numerical tweezers allow us to do simple simulations using just a few particles, giving us insight into the most basic particle interactions and the ways in which nuclear interactions inform nuclear structure."

The findings appear in Physical Review Letters. Rokash is first author of the paper. Funding was provided in part by the U.S. Department of Energy (DE-FG02-03ER41260). The computer simulations were conducted at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara.

TIME AND SPACE
In atomic propellers, quantum phenomena can mimic everyday physics
Warsaw, Poland (SPX) Jun 08, 2017
In molecules there are certain groups of atoms that are able to rotate. This movement occurs under the influence of random stimuli from the environment and is not continuous but occurs in jumps. It is generally believed that such jumps occur in a manner that is typical of classical objects, such as a fan blade prodded by a finger. Chemists from the institutes of the Polish Academy of Scien ... read more

Related Links
North Carolina State University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Japan workers exposed to dangerous radiation in lab

GMV to supply Copernicus services in support to EU external action

Sri Lanka hails record military deployment as toll hits 213

European Reassurance Initiative requests billion-dollar budget increase

TIME AND SPACE
GIS is a powerful tool that should be used with caution

Japan launches satellite in bid for super accurate GPS system

exactEarth Broadens Small Vessel Tracking Offering

Chinese firms develop BeiDou navigation applications

TIME AND SPACE
Tourists risk getting bit when they mistake monkey aggression for affection

Fossil skeleton confirms earliest primates were tree dwellers

Springs were critical water sources for early humans in East Africa, Rutgers study finds

Researchers Identify Conductor of Brain's Neural Orchestra and Begin to Decode the Score

TIME AND SPACE
Skin cure fad driving Myanmar elephant poaching surge: WWF

How and why did a house swift cross the Pacific

Humans pose ever-bigger extinction risk to animals: review

Panda stars get first taste of life in The Netherlands

TIME AND SPACE
Toward an HIV cure: Pitt team develops test to detect hidden virus

'Freak': meet Cuba's last self-infected HIV punk rebel

Stars dig deep at charity Cannes AIDS gala

Hundreds of Chinese students hospitalised for norovirus: Xinhua

TIME AND SPACE
China rights lawyer charged with subversion

Chinese skinny-dippers defy public morals

Thousands gather at Hong Kong Tiananmen vigil

US returns criminal suspect to China

TIME AND SPACE
Golden Triangle narco-gangs churning out new highs, UN warns

UN counter-drug official kidnapped in Colombia: officials

Indian, Chinese navies rescue ship hijacked by Somali pirates

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.