Subscribe free to our newsletters via your
. Medical and Hospital News .




CARBON WORLDS
Playing pool with carbon atoms
by Staff Writers
Tucson AZ (SPX) May 05, 2014


Brian LeRoy (right) and graduate student and first author of the study, Matthew Yankowitz, use a tunneling electron microscope to probe the electronic properties of graphene. Image courtesy Daniel Stolte/UAnews.

A University of Arizona-led team of physicists has discovered how to change the crystal structure of graphene, more commonly known as pencil lead, with an electric field, an important step toward the possible use of graphene in microprocessors that would be smaller and faster than current, silicon-based technology.

Graphene consists of extremely thin sheets of graphite: when writing with a pencil, graphene sheets slough off the pencil's graphite core and stick to the page. If placed under a high-powered electron microscope, graphene reveals its sheet-like structure of cross-linked carbon atoms, resembling chicken wire.

When manipulated by an electric field, parts of the material are transformed from behaving as a metal to behaving as a semiconductor, the UA physicists found.

Graphene is the world's thinnest material, with 300,000 sheets needed to amount to the thickness of a human hair or a sheet of paper. Scientists and engineers are interested in it because of its possible applications in microelectronic devices, in hopes of propelling us from the silicon age to the graphene age. The tricky part is to control the flow of electrons through the material, a necessary prerequisite for putting it to work in any type of electronic circuit.

Brian LeRoy, UA associate professor of physics, and his collaborators have cleared a hurdle toward that goal by showing that an electric field is capable of controlling the crystal structure of trilayer graphene - which is made up of three layers of graphene.

Most materials require high temperatures, pressure or both to change their crystal structure, which is the reason why graphite doesn't spontaneously turn into diamond or vice versa.

"It is extremely rare for a material to change its crystal structure just by applying an electric field," LeRoy said. "Making trilayer graphene is an exceptionally unique system that could be utilized to create novel devices."

Trilayer graphene can be stacked in two unique ways. This is analogous to stacking layers of billiards balls in a triangular lattice, with the balls representing the carbon atoms.

"When you stack two layers of billiards balls, their 'crystal structure' is fixed because the top layer of balls must sit in holes formed by the triangles of the bottom layer," explained Matthew Yankowitz, a third-year doctoral student in LeRoy's lab. He is the first author on the published research, which appears in the journal Nature Materials. "The third layer of balls may be stacked in such a way that its balls are flush above the balls in the bottom layer, or it may be offset slightly so its balls come to lie above the holes formed by triangles in the bottom layer."

These two stacking configurations can naturally exist in the same flake of graphene. The two domains are separated by a sharp boundary where the carbon hexagons are strained to accommodate the transition from one stacking pattern to the other.

"Due to the different stacking configurations on either side of the domain wall, one side of the material behaves as a metal, while the other side behaves as a semiconductor," LeRoy explained.

While probing the domain wall with an electric field, applied by an extremely sharp metal scanning tunneling microscopy tip, the researchers in LeRoy's group discovered that they could move the position of the domain wall within the flake of graphene. And as they moved the domain wall, the crystal structure of the trilayer graphene changed in its wake.

"We had the idea that there would be interesting electronic effects at the boundary, and the boundary kept moving around on us," LeRoy said. "At first it was frustrating, but once we realized what was going on, it turned out to be the most interesting effect."

By applying an electric field to move the boundary, it is now possible for the first time to change the crystal structure of graphene in a controlled fashion.

"Now we have a knob that we can turn to change the material from metallic into semiconducting and vice versa to control the flow of electrons," LeRoy said. "It basically gives us an on-off switch, which had not been realized yet in graphene."

While more research is needed before graphene can be applied in technological applications on an industrial scale, researchers see ways it may be used.

"If you used a wide electrode instead of a pointed tip, you could move the boundary between the two configurations a farther distance, which could make it possible to create transistors from graphene," Yankowitz said.

Transistors are a staple of electronic circuits because they control the flow of electrons.

Unlike silicon transistors used now, graphene-based transistors could be extremely thin, making the device much smaller, and since electrons move through graphene much faster than through silicon, the devices would enable faster computing.

In addition, silicon-based transistors are being manufactured to function as one of two types - p-type or n-type - whereas graphene could operate as both. This would make them cheaper to produce and more versatile in their applications.

The other contributors to the research paper, "Electric field control of soliton motion and stacking in trilayer graphene," include Joel I-Jan Wang (Massachusetts Institute of Technology and Harvard University in Cambridge, Massachusetts), A. Glen Birdwell (U.S. Army Research Laboratory, Adelphi, Maryland), Yu-An Chen (MIT), K. Watanabe and T. Taniguchi (National Institute for Materials Science, Tsukuba, Japan), Philippe Jacquod (UA Department of Physics), Pablo San-Jose (Instituto de Ciencia de Materiales de Madrid) and Pablo Jarillo-Herrero (MIT). The study appears in Nature Materials

.


Related Links
University of Arizona
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Graphene Not All Good
Riverside CA (SPX) May 01, 2014
In a first-of-its-kind study of how a material some think could transform the electronics industry moves in water, researchers at the University of California, Riverside Bourns College of Engineering found graphene oxide nanoparticles are very mobile in lakes or streams and therefore likely to cause negative environmental impacts if released. Graphene oxide nanoparticles are an oxidized fo ... read more


CARBON WORLDS
Philippine typhoon survivors still struggling: Red Cross

Four held over deadly bridge collapse in China: Xinhua

US airmen aid burned Chinese sailors in high seas rescue

Afghan authorities seek new homes for landslide refugees

CARBON WORLDS
Latest Galileo satellite arrives at ESA's test centre

Glonass Failure Caused by Faulty Software

Homegrown high-precision positioning system put to use

Russia eyes building Glonass stations in 36 countries

CARBON WORLDS
Rocks lining Peruvian desert pointed to ancient fairgrounds

Autism risk is half genetic, half environmental: study

ASU scientists take steps to unlock the secrets to the fountain of youth

DNA 'Sat Nav' directs you to your ancestor's home

CARBON WORLDS
Light-sensitive "eyes" in plants

Scientists saving Darwin finches one pesticide-soaked cotton ball at a time

Spanish island fights snake invasion

New atom-scale knowledge on the function of biological photosensors

CARBON WORLDS
Scientists confirm new bird flu in South Pole penguins

China study improves understanding of disease spread

Decrease in large wildlife drives rodent-borne diseases

Mystery of the pandemic flu virus of 1918 solved by University of Arizona researchers

CARBON WORLDS
China lawyer held ahead of Tiananmen anniversary: associate

Migration steals the magic from China's mountain shamans

Church demolition illuminates China's religious tensions

US lawmaker urges China to expand religious freedoms

CARBON WORLDS
Chinese worker kidnapped in Malaysia's Borneo island

Vietnam says 7 killed in shooting on China border

Kidnappers demand $11 mln for Chinese tourist

Malaysia kidnappers telephone Chinese victim's family

CARBON WORLDS
China hikes state firms' dividend payments

Owning a home still beats renting

Chinese underwhelmed by 'world's No. 1 economy' data

China poised to overtake US economy: World Bank ranking




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.