Subscribe free to our newsletters via your
. Medical and Hospital News .




BIO FUEL
Pond-dwelling powerhouse's genome points to its biofuel potential
by Staff Writers
Berkeley CA (SPX) Feb 23, 2014


Duckweed, a small, common plant that grows in ponds and stagnant waters, is an ideal candidate as a biofuel raw material.

Duckweed is a tiny floating plant that's been known to drive people daffy. It's one of the smallest and fastest-growing flowering plants that often becomes a hard-to-control weed in ponds and small lakes.

But it's also been exploited to clean contaminated water and as a source to produce pharmaceuticals. Now, the genome of Greater Duckweed (Spirodela polyrhiza) has given this miniscule plant's potential as a biofuel source a big boost.

In a paper published February 19, 2014 in the journal Nature Communications, researchers from Rutgers University, the Department of Energy Joint Genome Institute and several other facilities detailed the complete genome of S. polyrhiza and analyzed it in comparison to several other plants, including rice and tomatoes.

Simple and primitive, a duckweed plant consists of a single small kidney-shaped leaf about the size of a pencil-top eraser that floats on the surface of the water with a few thin roots underwater.

It grows in almost all geographic areas, at nearly any altitude. Although it's a flowering plant, it only rarely forms small indistinct flowers on the underside of its floating leaves.

Most of the time, it reproduces by budding off small leaves that are clones of the parent leaf. It often forms thick mats on the edges of ponds, quiet inlets of lakes and in marshes. It's among the fastest growing plants, able to double its population in a couple of days under ideal conditions.

These and other properties make it an ideal candidate as a biofuel feedstock - a raw source for biofuel production. For example, unlike plants on land, duckweeds don't need to hold themselves upright or transport water from distant roots to their leaves, so they're a relatively soft and pliable plant, containing tiny amounts of woody material such as lignin and cellulose.

Removing these woody materials from feedstock has been a major challenge in biofuel production. Also, although they are small enough to grow in many environments, unlike biofuel-producing microbes, duckweed plants are large enough to harvest easily.

S. polyrhiza turns out to have one of the smallest known plant genomes, at about 158 million base pairs and fewer than 20,000 protein-encoding genes. That's 27 percent fewer than Arabidopsis thaliana - which, until recently, was believed to be the smallest plant genome - and nearly half as many as rice plants.

"The most surprising find was insight into the molecular basis for genes involved in maturation - a forever-young lifestyle," said senior author Joachim Messing, director of the Waksman Institute of Microbiology at Rutgers University.

S. polyrhiza leaves resemble cotyledons, embryonic leaves inside plant seeds that become the first leaves after germination. But where other plants develop other kinds of leaves as they mature, S. polyrhiza's never progresses and continuously produces cotyledon leaves.

This prolonging of juvenile traits is called "neoteny." S. polyrhiza had fewer genes to promote and more genes to repress the switch from juvenile to mature growth.

"Because of the reduction in neoteny, there is an arrest in development and differentiation of organs. So this arrest allowed us to uncover regulatory networks that are required for differentiation and development," Messing said.

Also intriguing to the research team were which genes were preserved over time and which were not. Many of the genes responsible for cellulose and lignin production in land dwelling plants were missing, and there were fewer copies of those that were present. Genes for another compound related to cell walls called "expansins" which are involved with cell wall and root growth were also reduced.

Genes for starch production, on the other hand, were retained and are probably used for creating starch-filled turions, specialized buds produced by aquatic plants for overwintering, enabling them sink to the bottom of ponds and revive in warmer weather.

Moreover, despite the reduced number of total genes, S. polyrhiza has more copies of genes for enzymes involved in nitrogen absorption and metabolism than in other plants. This is probably linked to the plant's ability to utilize excess nitrogen in contaminated waters.

A thorough understanding of the genome and cellular mechanisms of S. polyrhiza could greatly enhance current efforts to recruit duckweed as a biofuel source. Messing estimates that duckweed will be a viable biofuel source within the next five years and points to Ceres Energy Group in New Jersey, which is already producing electricity from duckweed.

Understanding which genes produce which traits will allow researchers to create new varieties of duckweed with enhanced biofuel traits, such as increased reduction of cellulose or increased starch or even higher lipid production. Starch can be directly used as a biofuel source and it can be converted to ethanol, the way corn is currently converted to ethanol fuel, but oils would have greater energy than ethanol.

"Classical breeding or genetics does not apply here because of its clonal propagation and rare flowering, but these organisms can be transformed with DNA," Messing said. "Therefore, new variants can be created with modified pathways for industrial applications. These variants would be an enhancement over what can be done now."

This genome was sequenced as part of a DOE Office of Science JGI Community Science Program (CSP) project (formerly the Community Sequencing Program). It exemplifies the collaborative approach and innovative projects that the CSP enables among researchers. Messing pointed to the study's advances over previous research.

"The sequencing of this genome opens new frontiers in the molecular biology of aquatic plants," said Messing.

"This publication represents the single largest advance in this field and a new milestone in plant molecular biology and evolution, as previous studies were either classical botany or biochemistry of photosynthesis. The placement of the Spirodela genome as a basal monocot species will serve as a new reference for all flowering plants."

The authors on the publication also include researchers from MIPS/IBIS, Helmholtz Center Munich, Germany; University of California, Davis; Georgia Institute of Technology; Brookhaven National Laboratory; Donald Danforth Plant Science Center; University of Jena, Germany, HudsonAlpha Institute for Biotechnology; and the Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Germany.

.


Related Links
DOE/Joint Genome Institute
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
Plastic shopping bags make a fine diesel fuel
Champaign IL (SPX) Feb 17, 2014
Plastic shopping bags, an abundant source of litter on land and at sea, can be converted into diesel, natural gas and other useful petroleum products, researchers report. The conversion produces significantly more energy than it requires and results in transportation fuels - diesel, for example - that can be blended with existing ultra-low-sulfur diesels and biodiesels. Other products, suc ... read more


BIO FUEL
100-tonne radioactive water leak at Fukushima: TEPCO

Post-tsunami deaths outnumber disaster toll in one Japan area

Police to investigate death of Manus asylum detainee

Outsmarting nature during disasters

BIO FUEL
Russia to deploy up to 7 Glonass ground stations outside of national territory in 2014

Northrop Grumman Awarded U.S. Military Contract for Navigation Systems

Galileo works, and works well

Sochi Olympic transport controlled from space using GLONASS satellite

BIO FUEL
Baylor Sheds New Light on the Habitat of Early Apes

Oldest fortified settlement in North America discovered in Georgia

What makes memories last?

Thinking it through: Scientists seek to unlock mysteries of the brain

BIO FUEL
Indonesian elephants found dead, poisoning suspected

Chinese pandas get red-carpet welcome in Belgium

Wolf hunt stand-off in Sweden heightens rural tensions

University of Tennessee study finds crocodiles climb trees

BIO FUEL
Study on flu evolution may change textbooks, history books

Flu hits young, middle aged people hard this year

Poland struck by first cases of African swine fever

Boy becomes Cambodia's first bird flu death of year

BIO FUEL
Wife of jailed Chinese Nobel winner in hospital

Questions over recovery of China's lost marbles

Ai Weiwei brushes off painter's smashing of $1m vase

Hong Kong officials criticise anti-Chinese protest

BIO FUEL
French navy arrests pirates suspected of oil tanker attack

Mexican vigilantes accuse army of killing four

Gunmen kill two soldiers in troubled Mexican state

China smugglers dig tunnel into Hong Kong: media

BIO FUEL
One of China's richest women ousted from top political body

Dalai Lama, in US, seeks humane capitalism

Hard landing unlikely for 'poorly understood' China: IMF chief

ATMs raise Bitcoin profile, concerns




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.