Medical and Hospital News  
TECH SPACE
Predicting the Lifespan of Materials in Space
by Debbie Lockhart for GRC News
Cleveland OH (SPX) Mar 21, 2018

File image

Almost every product we use has a shelf life. From milk and meat to laundry detergent and batteries, it's important to know when it's safe to use a product, and when it's time to replace it. But what about materials used for spacecraft?

It is vital for scientists to know exactly how long a material will last in outer space; which is why Kim de Groh, a senior materials research engineer at NASA's Glenn Research Center in Cleveland, is gathering data from the Materials International Space Station Experiment (MISSE) missions.

In April, de Groh will send 138 different material samples to the International Space Station as part of MISSE-9, which will be launched on SpaceX CRS-14 aboard a Dragon spacecraft. These samples will be part of the first MISSE mission to use the space station's new external materials testing platform, the MISSE-Flight Facility (MISSE-FF).

De Groh wants to know how long these materials will last in outer space and will learn this by analyzing the affects atomic oxygen and radiation have on exposed polymers, composites and coatings. The flight data is needed to predict spacecraft performance and durability.

On Earth, the oxygen we breathe is made of two atoms of oxygen (O2), but in space the sun's rays break down (O2) into single oxygen atoms, creating atomic oxygen.

When spacecraft, such as the space station and resupply vehicles, travel in low-Earth orbit, atomic oxygen can react with its surfaces, causing materials, such as polymers, to erode. In addition, radiation can cause spacecraft materials to become brittle and crack.

De Groh has been involved with the MISSE missions since they began in 2001, and through this research, de Groh and her colleague Bruce Banks, have developed a model to predict the erosion of materials in space.

MISSE-9 will expose materials in each flight orientation on the space station. This includes forward facing known as "ram," rear-facing known as "wake," space-facing known as "zenith," and Earth-facing, known as "nadir." Flying samples in each orientation will show how the varying atomic oxygen and solar exposures in each position affect material.

"We will fly some of the same materials in different orientations as the same material can react differently in each flight direction," said de Groh.

The researchers expect the highest exposure to atomic oxygen for the ram samples and the least exposure to atomic oxygen for the wake samples. The highest solar exposure is likely for the zenith samples and the lowest solar exposure for the nadir samples. Monthly photos will be taken of the samples while in space showing color changes or sample cracking.

After a year in space, the MISSE-9 samples will be returned to Earth for post-flight analyses.

The data obtained from this mission will enable de Groh to make more accurate predictions of materials and component lifetimes in space, allowing engineers to build longer-lasting vehicles for spaceflight.


Related Links
Space Station Research and Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
A new way to combine soft materials
Boston MA (SPX) Mar 20, 2018
Every complex human tool, from the first spear to latest smartphone, has contained multiple materials wedged, tied, screwed, glued or soldered together. But the next generation of tools, from autonomous squishy robots to flexible wearables, will be soft. Combining multiple soft materials into a complex machine requires an entirely new toolbox - after all, there's no such thing as a soft screw. Current methods to combine soft materials are limited, relying on glues or surface treatments that can re ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
ASEAN leaders tackle Rohingya crisis and urge South China Sea calm

Natural disasters can decimate insect, invertebrate populations

Australian, Cambodian trainers die in demining accident

Court orders Japan government to pay new Fukushima damages

TECH SPACE
Indra Expands With Four New Stations The Ground Segment Managing Galileo Satellites

GMV leads a project for application of EGNOS to maritime safety

Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

TECH SPACE
Evidence of early innovation pushes back timeline of human evolution

Archaeologists detail origins of elongated heads among ancient Bavarians

Chimpanzees inspire more accurate computer-generated animal simulations

Theory-of-mind networks develop in the brains of children by age three

TECH SPACE
Mangrove rivulus jumps farther as it ages, researchers say

Less-frequent lawn mowing may help suburban bees

African leaders call on EU to shut ivory trade

Global biodiversity 'crisis' to be assessed at major summit

TECH SPACE
New model links yellow fever in Africa to climate, environment

DARPA Names Researchers Working to Halt Outbreaks in 60 Days or Less

China confirms first human case of H7N4 bird flu

UV light can kill airborne flu virus, study finds

TECH SPACE
Xi gets second term with powerful ally as VP

Hong Kong's richest man Li Ka-shing to retire

China slams UK warnings about Hong Kong liberties

Hong Kong mulls three years' jail for anthem disrespect

TECH SPACE
Spain arrests 155 over Chinese human trafficking ring

Off West Africa, navies team up in fight against piracy

India seeks custody of fugitive arrested in Hong Kong

Vietnam cops seize $2.5 mn heroin in China border drug bust

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.