Free Newsletters - Space - Defense - Environment - Energy
..
. Medical and Hospital News .




ENERGY TECH
Pressure Cooking to Improve Electric Car Batteries
by Sean Nealon for UCR News
Riverside CA (SPX) Nov 19, 2013


Lithium iron phosphate battery created in Kisailus lab.

Batteries that power electric cars have problems. They take a long time to charge. The charge doesn't hold long enough to drive long distances. They don't allow drivers to quickly accelerate. They are big and bulky.

Researchers at the University of California, Riverside's Bourns College of Engineering have redesigned the component materials of the battery in an environmentally friendly way to solve some of these problems. By creating nanoparticles with a controlled shape, they believe smaller, more powerful and energy efficient batteries can be built. By modifying the size and shape of battery components, they aim to reduce charge times as well.

"This is a critical, fundamental step in improving the efficiency of these batteries," said David Kisailus, an associate professor of chemical and environmental engineering and lead researcher on the project.

In addition to electric cars, the redesigned batteries could be used for municipal energy storage, including energy generated by the sun and wind.

The initial findings are outlined in a just published paper called "Solvothermal Synthesis, Development and Performance of LiFePO4 Nanostructures" in the journal Crystal Growth and Design.

Kisailus, who is also the Winston Chung Endowed Professor in Energy Innovation, and Jianxin Zhu, a Ph.D. student working with Kisailus, were the lead authors of the paper. Other authors were: Joseph Fiore, Dongsheng Li, Nichola Kinsinger and Qianqian Wang, all of whom formerly worked with Kisailus; Elaine DiMasi, of Brookhaven National Laboratory; and Juchen Guo, an assistant professor of chemical and environmental engineering at UC Riverside.

The researchers in Kisailus' Biomimetics and Nanostructured Materials Lab set out to improve the efficiency of Lithium-ion batteries by targeting one of the material components of the battery, the cathode.

Lithium iron phosphate (LiFePO4), one type of cathode, has been used in electric vehicles because of its low cost, low toxicity and thermal and chemical stability. However, its commercial potential is limited because it has poor electronic conductivity and lithium ions are not very mobile within it.

Several synthetic methods have been utilized to overcome these deficiencies by controlling particle growth. Here, Kisailus and his team used a solvothermal synthetic method, essentially placing reactants into a container and heating them up under pressure, like a pressure cooker.

Kisailus, Zhu and their team used a mixture of solvents to control the size, shape and crystallinity of the particles and then carefully monitored how the lithium iron phosphate was formed. By doing this, they were able to determine the relationship between the nanostructures they formed and their performance in batteries.

By controlling the size of nanocrystals, which were typically 5,000 times smaller than the thickness of a human hair, within shape-controlled particles of LiFePO4, Kisailus' team has shown that batteries with more power on demand may be generated.

These size and shape modulated particles offer a higher fraction of insertion points and reduced pathlengths for Li-ion transport, thus improving battery rates. Kisailus and his team are currently refining this process to not only further improve performance and reduce cost, but also implement scalability.

The research was sponsored by the Winston Chung Global Energy Center, which is named after Winston Chung, a Chinese battery inventor who has provided more than $16 million in support to the campus in recent years for clean energy research.

.


Related Links
Bourns College of Engineering at UCR
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Scientists invent self-healing battery electrode
Stanford CA (SPX) Nov 19, 2013
Researchers have made the first battery electrode that heals itself, opening a new and potentially commercially viable path for making the next generation of lithium ion batteries for electric cars, cell phones and other devices. The secret is a stretchy polymer that coats the electrode, binds it together and spontaneously heals tiny cracks that develop during battery operation, said the team fr ... read more


ENERGY TECH
Grisly race to identify the Philippines' typhoon dead

China sends rescuers to Philippines after criticism over aid

Blow-up hospitals help Philippine typhoon effort

Australia-Indonesia relations dip further amid spying row

ENERGY TECH
CIA, Pentagon trying to hinder construction of GLONASS stations in US

GPS 3 Prototype Communicates With GPS Constellation

Russia to enforce GLONASS Over GPS

How pigeons may smell their way home

ENERGY TECH
Ancient, modern DNA tell story of first humans in the Americas

DNA of early hominid found to include 'mystery' early genes

China one-child law change small but crucial: experts

Dogs likely originated in Europe more than 18,000 years ago

ENERGY TECH
Land management as a key to countering butterfly declines

Evolution can select for evolvability

Nature's Glowing Slime: Scientists Peek into Hidden Sea Worm's Light

US destroys six-ton ivory stockpile

ENERGY TECH
New malaria vaccines roadmap targets next generation products by 2030

Indonesian woman dies of bird flu: health ministry

Technology helps Nigeria's fight against polio

How zinc starves lethal bacteria to stop infection

ENERGY TECH
Top China court calls for end to confession through torture

China reform pledges show Xi assuming Deng mantle: analysts

End to China labour camps cheered -- but what next?

China reform plan impresses, but analysts watch effects

ENERGY TECH
Spain jails six Somalis for piracy

Pirates kidnap two American sailors off Nigeria

Seaman Guard owner to fight arrest of ship's crew in India

Somali pirates on trial for seizing French yacht

ENERGY TECH
China unveils reforms to ease grip on economy

EU disciplines members over bloated budget deficits

China Communist Party vows to deepen reforms at key meeting

Walker's World: Are the Germans right?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement