Medical and Hospital News  
SOLAR DAILY
Pressure suppresses carrier trapping in 2D halide perovskite
by Staff Writers
Beijing, China (SPX) Jul 27, 2020

Fluorescence micrographs during compression and the PL intensity and contribution of the trapped states' emission as a function of pressure.

Two-dimensional (2D) organic-inorganic halide perovskites are emerging materials for photovoltaic and optoelectronic applications due to their unique physical properties and a high degree of tunability.

Despite impressive advances, challenges remain, including unsatisfactory performance and a vague understanding of their structure-property relationships. Addressing these challenges requires more suitable material systems and advanced in situ characterization methods.

An international team led by Dr. Xujie Lu and Dr. Wenge Yang from the Center for High Pressure Science and Technology Advanced Research (HPSTAR) and Prof. Song Jin from the University of Wisconsin-Madison discovered that lattice compression under a mild pressure considerably suppresses the carrier trapping of a 2D perovskite (HA)2(GA)Pb2I7, leading to significantly enhanced emission.

Intriguingly, a new phase obtained after pressure-treatment possesses a higher crystallographic symmetry, fewer trap states, and enhanced PL intensity. The findings were recently published in Angew. Chem. Int. Ed.

Lattice compression through hydrostatic pressure is an effective way to tune the structural and optical properties of two-dimensional (2D) halide perovskites - a new class of emerging materials for photovoltaic and light-emitting applications. However, few examples exhibit improved photoluminescence (PL) performance of 2D perovskites upon compression, and the structure-property relationship remains unclear.

In this work, the team used pressure to modulate a recently developed 2D perovskite (HA)2(GA)Pb2I7, whose structure features an enormous cage previously unattainable. This affords a rare opportunity to understand the structure-property relationship and explore emergent phenomena. Impressively, a remarkable 12-fold PL enhancement was achieved under a mild pressure within 1.6 GPa. The underlying mechanism was systematically investigated by in situ structural, spectroscopic, and theoretical analyses.

The lattice contraction leads to phonon hardening that considerably reduces the exciton-phonon interaction and, thus, enlarges the potential barrier for carrier trapping. Therefore, the photogenerated carriers can barely form the trapped states, and the nonradiative recombination pathway is primarily blocked, resulting in an enhanced emission from the free excitons.

Interestingly, for the first time, they revealed an irreversible and anomalous process during decompression, obtaining a yellow, non-luminescent, amorphous phase of (HA)2(GA)Pb2I7 with a higher bandgap. The emission can be triggered and dramatically increased under laser irradiation when the pressure was released to 1.5 GPa, accompanied by a color change from yellow to orange. Based on this observation, they used the laser beam to draw an "HP" pattern on the yellow sample surface in the DAC chamber.

When the pressure was released entirely, the amorphous yellow phase could spontaneously transform into a new orange phase with enhanced PL by over 100% compared with the pristine sample. Further structural characterization and spectra analysis reveals that the new phase possesses a higher crystallographic symmetry and less carrier trapping.

By using pressure to engineer the highly-distorted 2D halide perovskite, this work provides fresh insights into the structure-property relationships of perovskites and also enables the discovery of new high-performance materials through pressure-induced phase transitions.

Research paper


Related Links
Center For High Pressure Science and Technology Advanced Research
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Cooling mechanism increases solar energy harvesting for self-powered outdoor sensors
New York NY (SPX) Jul 13, 2020
Sensors placed in the environment spend long periods of time outdoors through all weather conditions, and they must continuously power themselves in order to collect data. Many, like photovoltaic cells, use the sun to produce electricity, but powering outdoor sensors at night is a challenge. Thermoelectric devices, which use the temperature difference between the top and bottom of the device to generate power, offer some promise for harnessing naturally occurring energy. But, despite being more ef ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Snapchat grudges, COVID-19 pressures drive US shooting epidemic

Myanmar army sacks officers over landslide tragedy

Iran says damage at nuclear site 'significant'

More than 160 dead in Myanmar jade mine landslide

SOLAR DAILY
Honeywell expands navigation options for precise data in areas without GPS

SMC contracts for Joint Modernized GPS Handheld Device across multiple suppliers

GPS isn't just for road trips anymore

China's last BDS satellite enters long-term operation mode

SOLAR DAILY
Study reveals differences between nobles, commoners in Middle Ages

Racism in the UK: the effects of a 'hostile environment'

Early peoples in Pacific Northwest were smoking smooth sumac

In the wild, chimpanzees are more motivated to cooperate than bonobos

SOLAR DAILY
Pakistan to relocate lonely elephant to Cambodia sanctuary

Pandemic highlights danger posed by wildlife crime: UN report

Silk Road discovery suggests cats were pets 1,000 years ago

Dozens of endangered dorcas gazelles killed by poachers in Niger

SOLAR DAILY
Five things to know about the EU virus recovery plan

China virus city in transport shutdown as WHO delays decision

Europe boosts China flight checks as killer virus spreads

Global health emergencies: A rarely used call to action

SOLAR DAILY
New York Times moving some Hong Kong staff over security law

Hong Kong academics fear for freedom under new security law

Detained Chinese professor who criticised Xi is freed, friends say

Prison terms for French ex-spies who shared secrets with China

SOLAR DAILY
China says five sailors kidnapped off Nigeria

Sweden extradites Chinese 'multi-million-dollar money launderer' to US

SOLAR DAILY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.