Medical and Hospital News  
TECH SPACE
Probing nobelium with laser light
by Staff Writers
Bonn, Germany (SPX) Jul 04, 2018

The experimental spectra from the laser spectroscopy of the three nobelium isotopes are shown in front of the calculated charge density distribution of No-254.

Sizes and shapes of nuclei with more than 100 protons were so far experimentally inaccessible. Laser spectroscopy is an established technique in measuring fundamental properties of exotic atoms and their nuclei. For the first time, this technique was now extended to precisely measure the optical excitation of atomic levels in the atomic shell of three isotopes of the heavy element nobelium, which contain 102 protons in their nuclei and do not occur naturally. This was reported by an international team lead by scientists from GSI Helmholtzzentrum fur Schwerionenforschung.

Nuclei of heavy elements can be produced at minute quantities of a few atoms per second in fusion reactions using powerful particle accelerators. The obtained results are well described by nuclear models, which suggest the nuclei to have a bubble-like structure with lower density in their center than at their surface. The results were published in a recent article in Physical Review Letters.

Atoms consist of a positively charged nucleus surrounded by an electron shell. The inner electrons penetrate the volume of the nucleus and thus atomic level energies are influenced by the size and shape of the atomic nucleus. A difference in size of two different atomic nuclei resulting, for example, from a different number of neutrons results in a small shift of electronic energy levels.

Precise measurements of these energies are possible using laser light. Energy shifts are traced by varying the frequency and correspondingly the color of the light required to excite electrons to higher energy levels. So far, this method could only be applied to isotopes of lighter elements which are produced at larger production rates and whose atomic structure was already known from experiments with abundant long-lived or stable isotopes.

Nuclei of elements above fermium (Fm, Z=100) can be produced at minute quantities of a few atoms per second in fusion reactions and generally exist only for at most a few seconds. Therefore, their atomic structure was so far not accessible with laser spectroscopic methods.

In the current experiments, nobelium isotopes were produced by fusion of calcium ions with lead at the velocity filter SHIP at GSI's accelerator facility. To enable laser spectroscopy, the high energetic nobelium atoms were stopped in argon gas. The results are based on a preceding experiment also conducted at GSI, exploring the atomic transitions of nobelium (No).

The chemical element with atomic number 102 was discovered about 60 years ago. The recent experiment investigated the isotopes No-254, No-253 and No-252 which differ in the number of constituent neutrons in their nuclei, with laser spectroscopy. The rates available for the experiment reached values below one ion per second for the isotope No-252.

From the measurements of the excitation frequency for the individual isotopes, the shift in color of the required laser light was determined for No-252 and No-254. For No-253, the fragmentation of the line into several hyperfine components induced by the single unpaired odd neutron was also resolved.

The sizes and the shapes of the atomic nuclei were deduced from using theoretical calculations of the atomic structure of nobelium, which were carried out in collaboration with scientists from the Helmholtz Institute Jena in Germany, the University of Groningen in the Netherlands, and the University of New South Wales in Sydney, Australia.

The results confirm that the nobelium isotopes are not spherical but are deformed like an American football. The measured change in size is consistent with nuclear model calculations performed by scientists from GSI and from the Michigan State University in the USA. These calculations predict that the studied nuclei feature a lower charge density in their center than at their surface.

Thanks to these pioneering studies, further heavy nuclides will be accessible for laser spectroscopic techniques, enabling a systematic investigation of changes in size and shape in the region of heavy nuclei. These experiments are so far only possible at GSI and allow for a unique in-depth understanding of the atomic and nuclear structure of the heaviest elements.

The results also play a role for the future facility FAIR (Facility for Antiproton and Ion Research), which is currently under construction at GSI. The same techniques and methods could also be employed in the low-energy branch of FAIR's super fragment separator.

Research paper


Related Links
Helmholtz Association
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Multiple lasers could be replaced by a single microcomb
Gothenburg, Sweden (SPX) Jun 15, 2018
Every time we send an e-mail, a tweet, or stream a video, we rely on laser light to transfer digital information over a complex network of optical fibers. Dozens of high-performance lasers are needed to fill up the bandwidth and to squeeze in an increasing amount of digital data. Researchers have now shown that all these lasers can be replaced by a single device called a microcomb. A microcomb is an optical device that generates very sharp and equidistant frequency lines in a tiny microphotonic ch ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Artificial intelligence accurately predicts distribution of radioactive fallout

NATO says ready to help Italy in Libya

Split families in limbo amid Trump immigration chaos

Nearly 1,000 migrants rescued off Libya coast: navy

TECH SPACE
Russia launches Soyuz-21b with Glonass-M navigation satellite

China's Beidou system helps livestock water supply in remote pastoral areas

UK says shut out of EU's Galileo sat-nav contracts

Woman drowns in Prague drains playing GPS treasure hunt

TECH SPACE
Rethinking the orangutan

Cranium of a four-million-year-old hominin shows similarities to that of modern humans

Cambodia finds 33 surrogate mothers in raid on illegal business

Key difference between humans and other mammals is skin deep, says study

TECH SPACE
EU court rules Malta wild bird traps illegal

Australian feral cats kill a million reptiles a day: study

Sri Lanka arrests villagers for killing leopard

Dozens of last blue macaws to be reintroduced to Brazil

TECH SPACE
Spot a rat? Real-time map aims to plot Paris sightings

US fears of 'mystery weapon' revived by new China diplomat cases

Dialing up the body's defenses against public health threats

Limiting global warming could avoid millions of dengue fever cases

TECH SPACE
US plans beefed up scrutiny of Chinese investments: Bloomberg

Chinese police break up protest of military veterans

Dominican Republic names ambassador to China

China pledges $100 million in military aid to Cambodia

TECH SPACE
Three Mexican soldiers killed in ambush

US targets Chinese fentanyl 'kingpin' with sanctions

Singaporean guilty of sophisticated exam cheating plot

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.