Medical and Hospital News  
CHIP TECH
Programmed assembly of wafer-scale atomically thin crystals
by Staff Writers
Pohang, South Korea (SPX) Mar 31, 2022

illustration only

Lego blocks, beloved by both children and adults, can be assembled into set models like space shuttles or cool buildings, but also can be used to build any new structures. Like these blocks, a new technology has been proposed to assemble atomic-sized blocks into new materials.

A POSTECH research team led by Professor Cheol-Joo Kim and Ph.D. candidates Seong-Jun Yang and Ju-Hyun Jung (Department of Chemical Engineering) in collaboration with Dr. Chang Cuk Hwang and Dr. Eunsook Lee (Pohang Accelerator Laboratory) and Professor Pinshane Y. Huang and Ph.D. candidate Edmund Han (University of Illinois Urbana-Champagne) has developed a technology for assembling wafer-scale films at the atomic level. Recently published as the front cover paper of Nano Letters, the findings are a result of precisely designing the structure of materials at the atomic level.

Crystal films composed of atoms offer varying physical properties based on the modulation of their thickness or atomic structures. Varying the stacking configuration of these thin films - layer-by-layer or twisted - produces different physical properties. However, studies conducted so far have only enabled assembly of atomically thin crystals at a very small-scale because assembling large wafer-sized thin films easily contaminates their interfaces, hindering the emergence of new properties.

To overcome this, the researchers proposed a programmed crystal assembly of graphene and monolayer hexagonal boron nitride (hBN), assisted by van der Waals interactions. This new technique produces wafer-scale films of nearly 100% pristine interfaces.

Applying this new method enables large-scale production of wafer-size artificial crystalline films which have been difficult to use as actual devices due to their small size. This technology shows promise to help develop new materials that emit light or conduct electricity since it can program the structure of a material at the atomic level.

"The atomic-level assembly method has been limited to very small sizes, limiting the discovery of properties and technology development to mere verification at the single-device level," remarked Professor Cheol-Joo Kim who led the study. He added, "The findings from this study have demonstrated the atomic-level precision assembly of single-crystalline materials at the wafer-scale for the first time, which will be applicable to the development of nanodevices in the future."

This study was conducted with the support from the Young Researcher Program and the Creative Materials Discovery Program of the National Research Foundation of Korea.

Research Report: "Wafer-Scale Programmed Assembly of One-Atom-Thick Crystals"


Related Links
Pohang University of Science and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
How a physicist aims to reduce the noise in quantum computing
Flagstaff AZ (SPX) Mar 31, 2022
Ever wondered why your credit score is what it is? Have you stored private information in the cloud that you want to remain that way? Thought about investing in cryptocurrency? Worried about cyber warfare? If you answered yes to any of these questions, quantum computing plays a role in your life-or at least, it will when its usage becomes practical enough to run the systems that run our daily lives. That's where Ryan Behunin's work comes in. Behunin, an assistant professor of applied p ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Russians leave Chernobyl with Ukrainian troops as hostages: Kyiv

Russians start to withdraw from Chernobyl: US

Russia occupies Chernobyl staff town, Kyiv says

New fires in Chernobyl exclusion zone: Ukraine deputy PM

CHIP TECH
Identifying RF and GPS interferences for military applications with satellite data

Turn your phone into a space monitoring tool

Ukraine war disrupts GPS in Finland, Mediterranean

China's BeiDou enters new phase of stable services, rapid development

CHIP TECH
Tools reveal patterns of Neandertal extinction in the Iberian Peninsula

New predictive model helps in identify ancient hunter-gatherer sites

Ancient campfires reveal a 50,000 year old grocer and pharmacy

Grains hints at origin of 7,000-year-old Swiss pile dwellings

CHIP TECH
Unravelling the mystery of parrot longevity

'Love hormone' oxytocin turns fierce lions into kittens

Hundreds of new mammal species waiting to be found

Biodiversity loss 'threat to financial stability'

CHIP TECH
Tale of two cities as Shanghai goes into slow-motion lockdown

Shanghai won't lock down despite Covid spike: official

Half of Shanghai in lockdown to curb Covid-19 outbreak

Anxiety and empty shelves as Shanghai Covid-19 cases surge

CHIP TECH
Hong Kong calls UK criticisms 'ridiculous'

Nine foreign judges to stay on Hong Kong's top court

Australian TV anchor has closed China trial on state secrets charges

Australian, Canadian judges to stay on HK top court as UK judges resign

CHIP TECH
Iran, Russia, China start war games to counter 'maritime piracy'

Denmark shelves prosecution of Africa piracy suspects

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.