. Medical and Hospital News .




.
FLORA AND FAUNA
Purdue scientists reveal how bacteria build homes inside healthy cells
by Elizabeth K. Gardner for Purdue News
West Lafayette, IN (SPX) Dec 27, 2011

Purdue associate professor of biological sciences Zhao-Qing Luo, at right, and graduate student Yunhao Tan look at the growth of Legionella pneumophila bacteria in a petri dish. (Purdue University photo provided by Laurie Iten and Rodney McPhail)

Bacteria are able to build camouflaged homes for themselves inside healthy cells - and cause disease - by manipulating a natural cellular process. Purdue University biologists led a team that revealed how a pair of proteins from the bacteria Legionella pneumophila, which causes Legionnaires disease, alters a host protein in order to divert raw materials within the cell for use in building and disguising a large structure that houses the bacteria as it replicates.

Zhao-Qing Luo, the associate professor of biological sciences who headed the study, said the modification of the host protein creates a dam, blocking proteins that would be used as bricks in cellular construction from reaching their destination.

The protein "bricks" are then diverted and incorporated into a bacterial structure called a vacuole that houses bacteria as it replicates within the cell. Because the vacuole contains materials natural to the cell, it goes unrecognized as a foreign structure.

"The bacterial proteins use the cellular membrane proteins to build their house, which is sort of like a balloon," Luo said. "It needs to stretch and grow bigger as more bacterial replication occurs. The membrane material helps the vacuole be more rubbery and stretchy, and it also camouflages the structure.

The bacteria is stealing material from the cell to build their own house and then disguising it so it blends in with the neighborhood."

The method by which the bacteria achieve this theft is what was most surprising to Luo.

The bacterial proteins, named AnkX and Lem3, modify the host protein through a biochemical process called phosphorylcholination that is used by healthy cells to regulate immune response. Phosphorylcholination is known to happen in many organisms and involves adding a small chemical group, called the phosphorylcholine moiety, to a target molecule, he said.

The team discovered that AnkX adds the phosphorylcholine moiety to a host protein involved in moving proteins from the cell's endoplasmic reticulum to their cellular destinations. The modification effectively shuts down this process and creates a dam that blocks the proteins from reaching their destination.

The bacterial protein Lem3 is positioned outside the vacuole and reverses the modification of the host protein to ensure that the protein "bricks" are free to be used in creation of the bacterial structure. This study was the first to identify proteins that directly add and remove the phosphorylcholine moiety, Luo said.

"We were surprised to find that the bacterial proteins use the phosphorylcholination process and to discover that this process is reversible," he said. "This is evidence of a new way signals are relayed within cells, and we are eager to investigate it."

The team also found that the phosphorylcholination reaction is carried out at a specific site on the protein called the Fic domain. Previous studies had shown this site induced a different reaction called AMPylation. It is rare for a domain to catalyze more than one reaction, and it was thought this site's only responsibility was to transfer the chemical group necessary for AMPylation, Luo said.

"Revealing that this domain has dual roles is very important to identify or screen for compounds to inhibit its activity and fight disease," he said. "This domain has a much broader involvement in biochemical reactions than we thought and may be a promising target for effective treatments."

During infection bacteria deliver hundreds of proteins into healthy cells that alter cellular processes to turn the hostile environment into one hospitable to bacterial replication, but the specific roles of only about 20 proteins are known, Luo said.

"In order to pinpoint proteins that would be good targets for new antibiotics, we need to determine their roles and importance to the success of infection," he said. "We need to understand at the biochemical level exactly what these proteins do and how they take over natural cellular processes. Then we can work on finding ways to block these activities, stop the infection and save lives."

A paper detailing their National Institutes of Health-funded work is published in the current issue of the Proceedings of National Academy of Sciences. In addition to Luo, Purdue graduate student Yunhao Tan and Randy Ronald of Indiana University co-authored the paper.

Luo next plans to use the bacterial proteins as a tool to learn more about the complex cellular processes controlled by phosphorylcholination and to determine the biochemical processes role in cell signaling.

Related Links
Luo lab
Darwin Today At TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



FLORA AND FAUNA
Capture of rare Sumatran rhino gives hope for species
Kuala Lumpur (AFP) Dec 26, 2011
Malaysian wildlife authorities said Monday the capture of a young female Borneo Sumatran rhino had given them a last chance to save the highly endangered species from extinction. The female rhino, aged between 10 and 12 years old, was caught on December 18 and is being kept in the Tabin Wildlife Reserve in Sabah on the Malaysian area of Borneo island where it is hoped it will breed with a lo ... read more


FLORA AND FAUNA
TEPCO seeks fresh $8.5 billion from Japan fund

Fukushima report faults TEPCO, government

Tent cities loom for Philippine flood victims

Japan atomic regulators, TEPCO 'unprepared': panel

FLORA AND FAUNA
GMV tracks the first Galileo IOV Satellite

GIS Degree A Safe Bet for Professionals in the Ever-Growing Oil Industry

Lockheed Martin Delivers GPS 3 Pathfinder Satellite to Denver on Schedule

Galileo in tune as first navigation signal transmitted to Earth

FLORA AND FAUNA
How to break Murphy's Law And Live To Tell The Tale

Human skull study causes evolutionary headache

Malaysian 'lords of the jungle' cling to ancient ways

Mind reading machines on their way: IBM

FLORA AND FAUNA
Purdue scientists reveal how bacteria build homes inside healthy cells

Escaped Siberian tiger shot dead in East China park

Capture of rare Sumatran rhino gives hope for species

Hellbender salamander study seeks answers for global amphibian decline

FLORA AND FAUNA
Indonesia probes Bali tattoo HIV infection report

Nepal's AIDS orphans forced into parental role

Australia says Bali tattoo likely gave patient HIV

Controversial 'bird flu' edits move ahead

FLORA AND FAUNA
China activist to go on trial this week: family

Chinese activist jailed for 10 years: rights group

China jails activist Chen Xi

Land grabs in China's Guangdong 'down 21% in 2010'

FLORA AND FAUNA
China starts Mekong patrols

China deploys patrol boats on Mekong: state media

Seychelles invites China to set up anti-piracy base

Britain detains seven suspected pirates in Seychelles

FLORA AND FAUNA
Outside View: Dead wrong!

Spain axes the country's science ministry

Japan approves $1.16-trillion draft budget

Japan cuts growth outlook as yen, disasters weigh


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement